apple-OpenELM-450M-bnb-4bit-smashed / configuration_openelm.py
sharpenb's picture
Upload folder using huggingface_hub (#1)
8b0a0ed verified
#
# For licensing see accompanying LICENSE file.
# Copyright (C) 2024 Apple Inc. All Rights Reserved.
#
"""Implements HF OpenELMConfig based on PretrainedConfig"""
from numbers import Number
from typing import List, Optional, Union
import numpy as np
from transformers import PretrainedConfig
def make_divisible(
v: Union[float, int],
divisor: Optional[int] = 8,
min_value: Optional[Union[float, int]] = None,
) -> Union[float, int]:
"""
This function is taken from the original tf repo.
It ensures that all layers have a channel number that is divisible by the divisor
It can be seen at:
https://github.com/tensorflow/models/blob/2cfc99eff5e5eb729c6793d2f3d03aa1c9be2b15/research/slim/nets/mobilenet/mobilenet.py#L62
Args:
v: input value
divisor: default to 8
min_value: minimum divisor value
Returns:
new_v: new divisible value
"""
if min_value is None:
min_value = divisor
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
# Make sure that round down does not go down by more than 10%.
if new_v < 0.9 * v:
new_v += divisor
return new_v
def compute_heads(model_dim: int, head_dim: int) -> int:
"""Compute the number of heads.
Args:
model_dim: Model dimension.
head_dim: Head dimension.
Returns:
An integer denoting number of heads in multi-head attention is returned.
Raises:
ValueError: if model dimension is not divisible by head dimension.
"""
if model_dim % head_dim == 0:
return model_dim // head_dim
else:
raise ValueError(
f"Model dimension should be divisible by head dimension. Got: {model_dim} and {head_dim}."
)
OpenELM_CONFIGS = {
"OpenELM-270M": dict(
num_transformer_layers=16,
model_dim=1280,
head_dim=64,
num_gqa_groups=4,
normalize_qk_projections=True,
share_input_output_layers=True,
# Vary the FFN and QKV multipliers to create variable FFN and attention layers respectively.
ffn_multipliers=(0.5, 4.0),
qkv_multipliers=(0.5, 1.0),
),
"OpenELM-450M": dict(
num_transformer_layers=20,
model_dim=1536,
head_dim=64,
num_gqa_groups=4,
normalize_qk_projections=True,
share_input_output_layers=True,
# Vary the FFN and QKV multipliers to create variable FFN and attention layers respectively.
ffn_multipliers=(0.5, 4.0),
qkv_multipliers=(0.5, 1.0),
),
"OpenELM-1_1B": dict(
num_transformer_layers=28,
model_dim=2048,
head_dim=64,
num_gqa_groups=4,
normalize_qk_projections=True,
share_input_output_layers=True,
# Vary the FFN and QKV multipliers to create variable FFN and attention layers respectively.
ffn_multipliers=(0.5, 4.0),
qkv_multipliers=(0.5, 1.0),
),
"OpenELM-3B": dict(
num_transformer_layers=36,
model_dim=3072,
head_dim=128,
num_gqa_groups=4,
normalize_qk_projections=True,
share_input_output_layers=True,
# Vary the FFN and QKV multipliers to create variable FFN and attention layers respectively.
ffn_multipliers=(0.5, 4.0),
qkv_multipliers=(0.5, 1.0),
),
}
class OpenELMConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`OpenELMModel`]. It is used to instantiate an OpenELM model according to the specified arguments, defining the model architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 32000):
Vocabulary size of the OpenELM model.
max_context_length (`int`, *optional*, defaults to 2048):
Maximum number of input tokens.
num_transformer_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer decoder.
model_dim (`int`, *optional*, defaults to 2048):
Dimension of the hidden representations.
head_dim (`int`, *optional*, defaults to 128):
The attention head dimension.
qkv_multipliers (`Union[Number, List[Number]]`, *optional*, defaults to 1.0):
If the qkv_multipliers is a Number, then all attention layers have the same latent dimensions,
resulting in uniform allocation of parameters.
If the qkv_multipliers is a List of Number, then each attention layer have different latent dimensions
assuming qkv_multipliers[0] != qkv_multipliers[1]. This results in variable allocation of parameters in attention layer.
This scaling is known as layer-wise or block-wise scaling: https://arxiv.org/abs/2008.00623
num_query_heads (`Union[int, None]`, *optional*, defaults to None):
The number of query heads, computed from `compute_heads(model_dim=model_dim, head_dim=head_dim)`.
num_gqa_groups (`int`, *optional*, defaults to 1):
This variable allows to switch between multi-head attention, group query attention, and multi-query attention.
When num_gqa_groups == 1, then it is multi-head attention.
When 1 < num_gqa_groups < num_heads and num_heads is divisible by num_gqa_groups, then it is group query attention
When num_gqa_groups == num_heads, then it is multi-query attention
ffn_multipliers (`Union[Number, List[Number]]`, *optional*, defaults to 4.0):
Feed-forward network (FFN) multipliers.
If the ffn_multipliers is a Number, then all FFN layers have the same latent dimensions,
resulting in uniform allocation of parameters.
If the ffn_multipliers is a List of Number, then each FFN layer have different latent dimensions
assuming ffn_multipliers[0] != ffn_multipliers[1]. This results in variable allocation of parameters in FFN layer.
This scaling is known as layer-wise or block-wise scaling: https://arxiv.org/abs/2008.00623
ffn_with_glu (`bool`, *optional*, defaults to True):
Whether to use FFN with Gated Linear Unit (GLU)
ffn_dim_divisor (`int`, *optional*, defaults to 256):
The ffn layer dimension divisor.
activation_fn_name (`str` or `function`, *optional*, defaults to `"swish"`):
The non-linear activation function (function or string) in the decoder.
normalization_layer_name (`str` or `function`, *optional*, defaults to `"rms_norm"`):
Type of normalization layer.
normalize_qk_projections (`bool`, *optional*, defaults to False):
Whether to normalize queries and keys after projections
share_input_output_layers (`bool`, *optional*, defaults to False):
Whether to share the embedding between input and output linear layer
rope_freq_constant (`int`, *optional*, defaults to 10000):
The base period of the RoPE embeddings.
rope_max_length (`int`, *optional*, defaults to 4096):
That rope_max_length is set to twice of max_context_length.
This allows flexibility in token lengths during training or fine-tuning.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
bos_token_id (`int`, *optional*, defaults to 2):
Beginning of stream token id.
eos_token_id (`int`, *optional*, defaults to 1):
End of stream token id.
"""
model_type = "openelm"
def __init__(
self,
vocab_size: int = 32000,
max_context_length: int = 2048,
num_transformer_layers: int = 12,
model_dim: int = 2048,
head_dim: int = 128,
qkv_multipliers: Union[Number, List[Number]] = 1.0,
num_query_heads: Union[int, None] = None,
num_gqa_groups: int = 1,
ffn_multipliers: Union[Number, List[Number]] = 4.0,
ffn_with_glu: bool = True,
ffn_dim_divisor: int = 256,
activation_fn_name: str = "swish",
normalization_layer_name: str = "rms_norm",
normalize_qk_projections: bool = False,
share_input_output_layers: bool = False,
rope_freq_constant: int = 10000,
rope_max_length: int = 4096,
initializer_range: float = 0.02,
use_cache: bool = True,
bos_token_id: int = 1,
eos_token_id: int = 2,
**kwargs,
) -> None:
self.vocab_size = vocab_size
self.max_context_length = max_context_length
self.num_transformer_layers = num_transformer_layers
self.model_dim = model_dim
self.head_dim = head_dim
self.qkv_multipliers = qkv_multipliers
self.num_query_heads = num_query_heads
self.num_gqa_groups = num_gqa_groups
self.ffn_multipliers = ffn_multipliers
self.ffn_with_glu = ffn_with_glu
self.ffn_dim_divisor = ffn_dim_divisor
self.activation_fn_name = activation_fn_name
self.normalization_layer_name = normalization_layer_name
self.normalize_qk_projections = normalize_qk_projections
self.share_input_output_layers = share_input_output_layers
self.rope_freq_constant = rope_freq_constant
self.rope_max_length = rope_max_length
self.num_query_heads = (
compute_heads(model_dim=model_dim, head_dim=head_dim)
if num_query_heads is None
else num_query_heads
)
self.initializer_range = initializer_range
self.__post_init__()
super().__init__(
use_cache=use_cache,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
**kwargs,
)
def __post_init__(self) -> None:
if self.num_gqa_groups is not None:
head_multiple_of = self.num_gqa_groups
else:
head_multiple_of = 2
if isinstance(self.qkv_multipliers, Number):
# All attention layers have the same latent dimensions, resulting in uniform allocation of parameters.
qkv_dim = make_divisible(
self.model_dim * self.qkv_multipliers,
divisor=self.head_dim * head_multiple_of,
)
query_dims = [int(qkv_dim)] * self.num_transformer_layers
elif (
isinstance(self.qkv_multipliers, (tuple, list))
and len(self.qkv_multipliers) == 2
):
# Each attention layer have different latent dimensions assuming qkv_multipliers[0] != qkv_multipliers[1].
# This results in variable allocation of parameters in attention layer.
# This scaling is known as layer-wise or block-wise scaling: https://arxiv.org/abs/2008.00623
qkv_multipliers = [
round(v, 2)
for v in np.linspace(
self.qkv_multipliers[0],
self.qkv_multipliers[1],
num=self.num_transformer_layers,
dtype=float,
)
]
# Make sure that scaled model dimension is divisible by scaled head dimension.
query_dims = [
int(
make_divisible(
self.model_dim * m, divisor=self.head_dim * head_multiple_of
)
)
for m in qkv_multipliers
]
else:
raise NotImplementedError(
f"QKV multipliers should be a single number or a list containing exactly two numbers. Got: {qkv_multipliers}."
)
# compute the number of query, key, and value heads
# For multi-head and multi-query attention, the number of heads for query, key, and value are the same.
# For group query attention, the number of key and value heads are the same.
self.num_query_heads = [
int(compute_heads(q_dim, self.head_dim)) for q_dim in query_dims
]
self.num_kv_heads = [
q_heads // self.num_gqa_groups for q_heads in self.num_query_heads
]
# Feed-forward network (FFN) multipliers
if isinstance(self.ffn_multipliers, Number):
# All FFN layers have the same latent dimensions, resulting in uniform allocation of parameters.
self.ffn_multipliers = [self.ffn_multipliers] * self.num_transformer_layers
elif isinstance(self.ffn_multipliers, (tuple, list)):
# Each FFN layer have different latent dimensions assuming ffn_multipliers[0] != ffn_multipliers[1].
# This results in variable allocation of parameters in FFN layer.
# This scaling is known as layer-wise or block-wise scaling: https://arxiv.org/abs/2008.00623
if len(self.ffn_multipliers) == 2:
self.ffn_multipliers = [
round(v, 2)
for v in np.linspace(
self.ffn_multipliers[0],
self.ffn_multipliers[1],
num=self.num_transformer_layers,
dtype=float,
)
]
else:
assert (
len(self.ffn_multipliers) == self.num_transformer_layers
), f"{len(self.ffn_multipliers)=}!={self.num_transformer_layers=}"
else:
raise NotImplementedError(
f"FFN multipliers should be a single number or a list containing exactly two numbers. Got: {qkv_multipliers}."
)
# check num_query_heads divisible by num_kv_heads for every layer
for layer_idx in range(len(query_dims)):
assert self.num_query_heads[layer_idx] % self.num_kv_heads[layer_idx] == 0