sharpenb commited on
Commit
3fe15d8
1 Parent(s): 2890c18

36e2b847d0531957a4e971a9acdc5318f1a84d6cda625619418d3a1768443313

Browse files
README.md ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ thumbnail: "https://assets-global.website-files.com/646b351987a8d8ce158d1940/64ec9e96b4334c0e1ac41504_Logo%20with%20white%20text.svg"
3
+ base_model: jiajunlong/TinyLLaVA-OpenELM-450M-CLIP-0.55B
4
+ metrics:
5
+ - memory_disk
6
+ - memory_inference
7
+ - inference_latency
8
+ - inference_throughput
9
+ - inference_CO2_emissions
10
+ - inference_energy_consumption
11
+ tags:
12
+ - pruna-ai
13
+ ---
14
+ <!-- header start -->
15
+ <!-- 200823 -->
16
+ <div style="width: auto; margin-left: auto; margin-right: auto">
17
+ <a href="https://www.pruna.ai/" target="_blank" rel="noopener noreferrer">
18
+ <img src="https://i.imgur.com/eDAlcgk.png" alt="PrunaAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
19
+ </a>
20
+ </div>
21
+ <!-- header end -->
22
+
23
+ [![Twitter](https://img.shields.io/twitter/follow/PrunaAI?style=social)](https://twitter.com/PrunaAI)
24
+ [![GitHub](https://img.shields.io/github/followers/PrunaAI?label=Follow%20%40PrunaAI&style=social)](https://github.com/PrunaAI)
25
+ [![LinkedIn](https://img.shields.io/badge/LinkedIn-Connect-blue)](https://www.linkedin.com/company/93832878/admin/feed/posts/?feedType=following)
26
+ [![Discord](https://img.shields.io/badge/Discord-Join%20Us-blue?style=social&logo=discord)](https://discord.gg/rskEr4BZJx)
27
+
28
+ # Simply make AI models cheaper, smaller, faster, and greener!
29
+
30
+ - Give a thumbs up if you like this model!
31
+ - Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
32
+ - Request access to easily compress your *own* AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
33
+ - Read the documentations to know more [here](https://pruna-ai-pruna.readthedocs-hosted.com/en/latest/)
34
+ - Join Pruna AI community on Discord [here](https://discord.gg/CP4VSgck) to share feedback/suggestions or get help.
35
+
36
+ ## Results
37
+
38
+ ![image info](./plots.png)
39
+
40
+ **Frequently Asked Questions**
41
+ - ***How does the compression work?*** The model is compressed with llm-int8.
42
+ - ***How does the model quality change?*** The quality of the model output might vary compared to the base model.
43
+ - ***How is the model efficiency evaluated?*** These results were obtained on HARDWARE_NAME with configuration described in `model/smash_config.json` and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.
44
+ - ***What is the model format?*** We use safetensors.
45
+ - ***What calibration data has been used?*** If needed by the compression method, we used WikiText as the calibration data.
46
+ - ***What is the naming convention for Pruna Huggingface models?*** We take the original model name and append "turbo", "tiny", or "green" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model.
47
+ - ***How to compress my own models?*** You can request premium access to more compression methods and tech support for your specific use-cases [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
48
+ - ***What are "first" metrics?*** Results mentioning "first" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads.
49
+ - ***What are "Sync" and "Async" metrics?*** "Sync" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. "Async" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases.
50
+
51
+ ## Setup
52
+
53
+ You can run the smashed model with these steps:
54
+
55
+ 0. Check requirements from the original repo jiajunlong/TinyLLaVA-OpenELM-450M-CLIP-0.55B installed. In particular, check python, cuda, and transformers versions.
56
+ 1. Make sure that you have installed quantization related packages.
57
+ ```bash
58
+ pip install transformers accelerate bitsandbytes>0.37.0
59
+ ```
60
+ 2. Load & run the model.
61
+ ```python
62
+ from transformers import AutoModelForCausalLM, AutoTokenizer
63
+
64
+
65
+ model = AutoModelForCausalLM.from_pretrained("PrunaAI/jiajunlong-TinyLLaVA-OpenELM-450M-CLIP-0.55B-bnb-4bit-smashed", trust_remote_code=True, device_map='auto')
66
+ tokenizer = AutoTokenizer.from_pretrained("jiajunlong/TinyLLaVA-OpenELM-450M-CLIP-0.55B")
67
+
68
+ input_ids = tokenizer("What is the color of prunes?,", return_tensors='pt').to(model.device)["input_ids"]
69
+
70
+ outputs = model.generate(input_ids, max_new_tokens=216)
71
+ tokenizer.decode(outputs[0])
72
+ ```
73
+
74
+ ## Configurations
75
+
76
+ The configuration info are in `smash_config.json`.
77
+
78
+ ## Credits & License
79
+
80
+ The license of the smashed model follows the license of the original model. Please check the license of the original model jiajunlong/TinyLLaVA-OpenELM-450M-CLIP-0.55B before using this model which provided the base model. The license of the `pruna-engine` is [here](https://pypi.org/project/pruna-engine/) on Pypi.
81
+
82
+ ## Want to compress other models?
83
+
84
+ - Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
85
+ - Request access to easily compress your own AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
config.json ADDED
@@ -0,0 +1,165 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/ceph/hdd/staff/charpent/.cache/modelsftw71kavjcm_8tgh",
3
+ "architectures": [
4
+ "TinyLlavaForConditionalGeneration"
5
+ ],
6
+ "auto_map": {
7
+ "AutoConfig": "configuration.TinyLlavaConfig",
8
+ "AutoModelForCausalLM": "modeling_tinyllava_elm.TinyLlavaForConditionalGeneration"
9
+ },
10
+ "cache_dir": null,
11
+ "connector_type": "mlp2x_gelu",
12
+ "hidden_size": 1536,
13
+ "ignore_index": -100,
14
+ "image_aspect_ratio": "square",
15
+ "image_token_index": -200,
16
+ "llm_model_name_or_path": "apple/OpenELM-450M-Instruct",
17
+ "model_type": "tinyllava",
18
+ "num_queries": 128,
19
+ "num_resampler_layers": 3,
20
+ "pad_token": "<unk>",
21
+ "quantization_config": {
22
+ "_load_in_4bit": true,
23
+ "_load_in_8bit": false,
24
+ "bnb_4bit_compute_dtype": "bfloat16",
25
+ "bnb_4bit_quant_storage": "uint8",
26
+ "bnb_4bit_quant_type": "fp4",
27
+ "bnb_4bit_use_double_quant": false,
28
+ "llm_int8_enable_fp32_cpu_offload": false,
29
+ "llm_int8_has_fp16_weight": false,
30
+ "llm_int8_skip_modules": [
31
+ "lm_head"
32
+ ],
33
+ "llm_int8_threshold": 6.0,
34
+ "load_in_4bit": true,
35
+ "load_in_8bit": false,
36
+ "quant_method": "bitsandbytes"
37
+ },
38
+ "resampler_hidden_size": 768,
39
+ "text_config": {
40
+ "_name_or_path": "apple/OpenELM-450M-Instruct",
41
+ "activation_fn_name": "swish",
42
+ "architectures": [
43
+ "OpenELMForCausalLM"
44
+ ],
45
+ "auto_map": {
46
+ "AutoConfig": "apple/OpenELM-450M-Instruct--configuration_openelm.OpenELMConfig",
47
+ "AutoModelForCausalLM": "apple/OpenELM-450M-Instruct--modeling_openelm.OpenELMForCausalLM"
48
+ },
49
+ "ffn_dim_divisor": 256,
50
+ "ffn_multipliers": [
51
+ 0.5,
52
+ 0.68,
53
+ 0.87,
54
+ 1.05,
55
+ 1.24,
56
+ 1.42,
57
+ 1.61,
58
+ 1.79,
59
+ 1.97,
60
+ 2.16,
61
+ 2.34,
62
+ 2.53,
63
+ 2.71,
64
+ 2.89,
65
+ 3.08,
66
+ 3.26,
67
+ 3.45,
68
+ 3.63,
69
+ 3.82,
70
+ 4.0
71
+ ],
72
+ "ffn_with_glu": true,
73
+ "head_dim": 64,
74
+ "max_context_length": 2048,
75
+ "model_dim": 1536,
76
+ "model_type": "openelm",
77
+ "normalization_layer_name": "rms_norm",
78
+ "normalize_qk_projections": true,
79
+ "num_gqa_groups": 4,
80
+ "num_kv_heads": [
81
+ 3,
82
+ 3,
83
+ 3,
84
+ 4,
85
+ 4,
86
+ 4,
87
+ 4,
88
+ 4,
89
+ 4,
90
+ 4,
91
+ 5,
92
+ 5,
93
+ 5,
94
+ 5,
95
+ 5,
96
+ 5,
97
+ 6,
98
+ 6,
99
+ 6,
100
+ 6
101
+ ],
102
+ "num_query_heads": [
103
+ 12,
104
+ 12,
105
+ 12,
106
+ 16,
107
+ 16,
108
+ 16,
109
+ 16,
110
+ 16,
111
+ 16,
112
+ 16,
113
+ 20,
114
+ 20,
115
+ 20,
116
+ 20,
117
+ 20,
118
+ 20,
119
+ 24,
120
+ 24,
121
+ 24,
122
+ 24
123
+ ],
124
+ "num_transformer_layers": 20,
125
+ "qkv_multipliers": [
126
+ 0.5,
127
+ 1.0
128
+ ],
129
+ "rope_freq_constant": 10000,
130
+ "rope_max_length": 4096,
131
+ "share_input_output_layers": true,
132
+ "tie_word_embeddings": true,
133
+ "torch_dtype": "float16"
134
+ },
135
+ "tokenizer_model_max_length": 2048,
136
+ "tokenizer_name_or_path": "meta-llama/Llama-2-7b-hf",
137
+ "tokenizer_padding_side": "right",
138
+ "tokenizer_use_fast": false,
139
+ "torch_dtype": "float16",
140
+ "transformers_version": "4.42.4",
141
+ "tune_type_connector": "full",
142
+ "tune_type_llm": "full",
143
+ "tune_type_vision_tower": "frozen",
144
+ "tune_vision_tower_from_layer": 0,
145
+ "use_cache": true,
146
+ "vision_config": {
147
+ "dropout": 0.0,
148
+ "hidden_size": 768,
149
+ "image_size": 224,
150
+ "intermediate_size": 3072,
151
+ "model_name_or_path": "openai/clip-vit-base-patch16",
152
+ "model_name_or_path2": "",
153
+ "model_type": "clip_vision_model",
154
+ "num_attention_heads": 12,
155
+ "num_hidden_layers": 12,
156
+ "patch_size": 16,
157
+ "projection_dim": 512
158
+ },
159
+ "vision_feature_layer": -2,
160
+ "vision_feature_select_strategy": "patch",
161
+ "vision_hidden_size": 768,
162
+ "vision_model_name_or_path": "openai/clip-vit-base-patch16",
163
+ "vision_model_name_or_path2": "",
164
+ "vocab_size": 32000
165
+ }
configuration.py ADDED
@@ -0,0 +1,116 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import PretrainedConfig
2
+ from transformers import CONFIG_MAPPING
3
+ from transformers import AutoConfig
4
+
5
+ IGNORE_INDEX = -100
6
+ IMAGE_TOKEN_INDEX = -200
7
+ DEFAULT_IMAGE_TOKEN = "<image>"
8
+
9
+
10
+ class TinyLlavaConfig(PretrainedConfig):
11
+
12
+ model_type = "tinyllava"
13
+ def __init__(
14
+ self,
15
+ llm_model_name_or_path = '',
16
+ tokenizer_name_or_path = None,
17
+ vision_model_name_or_path = '',
18
+ vision_model_name_or_path2 = '',
19
+ connector_type = None,
20
+ text_config=None,
21
+ hidden_size=2048,
22
+ vocab_size=32000,
23
+ ignore_index=-100,
24
+ image_token_index=32000,
25
+ pad_token = None,
26
+ pad_token_id = None,
27
+ tokenizer_padding_side = 'right',
28
+ tokenizer_model_max_length = 2048,
29
+ vision_config = None,
30
+ vision_hidden_size = None,
31
+ vision_feature_layer = -2,
32
+ vision_feature_select_strategy = 'patch',
33
+ image_aspect_ratio = 'square',
34
+ resampler_hidden_size = None,
35
+ num_queries = None,
36
+ num_resampler_layers = None,
37
+ use_cache = False,
38
+ cache_dir = None,
39
+ tokenizer_use_fast = False,
40
+ tune_type_llm = 'frozen',
41
+ tune_type_connector = 'frozen',
42
+ tune_type_vision_tower = 'frozen',
43
+ tune_vision_tower_from_layer = -1,
44
+
45
+ **kwargs
46
+
47
+ ):
48
+ self.llm_model_name_or_path = llm_model_name_or_path
49
+ self.tokenizer_name_or_path = tokenizer_name_or_path or self.llm_model_name_or_path
50
+ self.vision_model_name_or_path = vision_model_name_or_path
51
+ self.vision_model_name_or_path2 = vision_model_name_or_path2
52
+ self.connector_type = connector_type
53
+ self.tune_type_llm = tune_type_llm
54
+ self.tune_type_connector = tune_type_connector
55
+ self.tune_type_vision_tower = tune_type_vision_tower
56
+ self.tune_vision_tower_from_layer = tune_vision_tower_from_layer
57
+
58
+ self.ignore_index = IGNORE_INDEX
59
+ self.image_token_index = IMAGE_TOKEN_INDEX
60
+ self.pad_token = pad_token
61
+ self.pad_token_id = pad_token_id
62
+ self.tokenizer_padding_side = tokenizer_padding_side
63
+ self.tokenizer_model_max_length = tokenizer_model_max_length
64
+ self.vision_feature_layer = vision_feature_layer
65
+ self.vision_feature_select_strategy = vision_feature_select_strategy
66
+ self.image_aspect_ratio = image_aspect_ratio
67
+ self.resampler_hidden_size = resampler_hidden_size
68
+ self.num_queries = num_queries
69
+ self.num_resampler_layers = num_resampler_layers
70
+ self.use_cache = use_cache
71
+ self.cache_dir = cache_dir
72
+ self.tokenizer_use_fast = tokenizer_use_fast
73
+ self._load_text_config(text_config)
74
+ self._load_vision_config(vision_config)
75
+
76
+ super().__init__(**kwargs)
77
+
78
+
79
+ def _load_text_config(self, text_config=None):
80
+ if self.llm_model_name_or_path is None or self.llm_model_name_or_path == '':
81
+ self.text_config = CONFIG_MAPPING['llama']()
82
+
83
+ else:
84
+ self.text_config = AutoConfig.from_pretrained(self.llm_model_name_or_path, trust_remote_code=True)
85
+ if text_config is not None:
86
+ self.text_config = self.text_config.from_dict(text_config)
87
+
88
+ self.hidden_size = getattr(self.text_config, 'hidden_size', getattr(self.text_config, 'model_dim', None))
89
+ self.vocab_size = getattr(self.text_config, 'vocab_size', None)
90
+
91
+
92
+
93
+ def _load_vision_config(self, vision_config=None):
94
+ if self.vision_model_name_or_path is None or self.vision_model_name_or_path == '':
95
+ self.vision_config = CONFIG_MAPPING['clip_vision_model'](
96
+ intermediate_size=4096,
97
+ hidden_size=1024,
98
+ patch_size=14,
99
+ image_size=336,
100
+ num_hidden_layers=24,
101
+ num_attention_heads=16,
102
+ vocab_size=32000,
103
+ projection_dim=768,
104
+ )
105
+
106
+ else:
107
+ self.vision_config = AutoConfig.from_pretrained(self.vision_model_name_or_path.split(':')[-1])
108
+ self.vision_config = getattr(self.vision_config, 'vision_config', self.vision_config)
109
+ if vision_config is not None:
110
+ self.vision_config = self.vision_config.from_dict(vision_config)
111
+
112
+ self.vision_config.model_name_or_path = self.vision_model_name_or_path.split(':')[-1]
113
+ self.vision_config.model_name_or_path2 = self.vision_model_name_or_path2.split(':')[-1]
114
+ self.vision_hidden_size = getattr(self.vision_config, 'hidden_size', None)
115
+
116
+
generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 2,
5
+ "transformers_version": "4.42.4",
6
+ "use_cache": false
7
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3be933c7c77431e642ec1165d7f80d7797c013f4110ae1dedc988a06903401ce
3
+ size 379556530
modeling_tinyllava_elm.py ADDED
@@ -0,0 +1,1917 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from dataclasses import dataclass
2
+ import dataclasses
3
+ from typing import List, Optional, Tuple, Union
4
+ import ast
5
+ import re
6
+ from enum import auto, Enum
7
+ import requests
8
+ from PIL import Image
9
+ from io import BytesIO
10
+ import base64
11
+ import time
12
+
13
+ import torch
14
+ import torch.utils.checkpoint
15
+ from torch import nn, Tensor
16
+ from torch.nn import functional as F
17
+
18
+ from transformers import PreTrainedModel
19
+ from transformers.modeling_outputs import CausalLMOutputWithPast
20
+ from transformers.generation.utils import GenerateOutput
21
+ from transformers import CLIPVisionModel, CLIPImageProcessor,SiglipVisionModel, SiglipImageProcessor
22
+ from transformers import AutoConfig, AutoModelForCausalLM
23
+
24
+ from .configuration import TinyLlavaConfig, IGNORE_INDEX, IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN
25
+
26
+ # from tinyllava.utils.data_utils import get_value_from_kwargs
27
+ CONTROLLER_HEART_BEAT_EXPIRATION = 30
28
+ WORKER_HEART_BEAT_INTERVAL = 15
29
+
30
+ LOGDIR = "."
31
+ import os
32
+ #
33
+ # For licensing see accompanying LICENSE file.
34
+ # Copyright (C) 2024 Apple Inc. All Rights Reserved.
35
+ #
36
+
37
+ from torch.nn import CrossEntropyLoss
38
+ from transformers.activations import ACT2FN
39
+ from transformers.cache_utils import Cache, DynamicCache, StaticCache
40
+ from transformers.modeling_outputs import (
41
+ BaseModelOutputWithPast,
42
+ )
43
+ from transformers.utils import logging
44
+
45
+ logger = logging.get_logger(__name__)
46
+
47
+ # this import has to be relative, otherwise, when setting trust_remote_code=True
48
+ # huggingface transformers won't be able to load the module correctly
49
+ from numbers import Number
50
+ from typing import List, Optional, Union
51
+
52
+ import numpy as np
53
+ from transformers import PretrainedConfig, AutoTokenizer
54
+
55
+
56
+
57
+ logger = logging.get_logger(__name__)
58
+
59
+ # Model Constants
60
+ IGNORE_INDEX = -100
61
+ IMAGE_TOKEN_INDEX = -200
62
+ DEFAULT_IMAGE_TOKEN = "<image>"
63
+ DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>"
64
+ DEFAULT_IM_START_TOKEN = "<im_start>"
65
+ DEFAULT_IM_END_TOKEN = "<im_end>"
66
+ IMAGE_PLACEHOLDER = "<image-placeholder>"
67
+
68
+ CONTROLLER_HEART_BEAT_EXPIRATION = 30
69
+ WORKER_HEART_BEAT_INTERVAL = 15
70
+ LOGDIR = "."
71
+
72
+
73
+ class SeparatorStyle(Enum):
74
+ """Different separator style."""
75
+ SINGLE = auto()
76
+ TWO = auto()
77
+ MPT = auto()
78
+ PLAIN = auto()
79
+ LLAMA_2 = auto()
80
+ TINY_LLAMA = auto()
81
+ QWEN_2 = auto()
82
+
83
+
84
+ @dataclasses.dataclass
85
+ class Conversation:
86
+ """A class that keeps all conversation history."""
87
+ system: str
88
+ roles: List[str]
89
+ messages: List[List[str]]
90
+ offset: int
91
+ sep_style: SeparatorStyle = SeparatorStyle.SINGLE
92
+ sep: str = "###"
93
+ sep2: str = None
94
+ version: str = "Unknown"
95
+
96
+ skip_next: bool = False
97
+
98
+ def get_prompt(self):
99
+ messages = self.messages
100
+ if len(messages) > 0 and type(messages[0][1]) is tuple:
101
+ messages = self.messages.copy()
102
+ init_role, init_msg = messages[0].copy()
103
+ init_msg = init_msg[0].replace("<image>", "").strip()
104
+ if 'mmtag' in self.version:
105
+ messages[0] = (init_role, init_msg)
106
+ messages.insert(0, (self.roles[0], "<Image><image></Image>"))
107
+ messages.insert(1, (self.roles[1], "Received."))
108
+ else:
109
+ messages[0] = (init_role, "<image>\n" + init_msg)
110
+
111
+ if self.sep_style == SeparatorStyle.TWO:
112
+ seps = [self.sep, self.sep2]
113
+ ret = self.system + seps[0]
114
+ for i, (role, message) in enumerate(messages):
115
+ if message:
116
+ if type(message) is tuple:
117
+ message, _, _ = message
118
+ ret += role + ": " + message + seps[i % 2]
119
+ else:
120
+ ret += role + ":"
121
+ else:
122
+ raise ValueError(f"Invalid style: {self.sep_style}")
123
+
124
+ return ret
125
+
126
+ def append_message(self, role, message):
127
+ self.messages.append([role, message])
128
+
129
+ def copy(self):
130
+ return Conversation(
131
+ system=self.system,
132
+ roles=self.roles,
133
+ messages=[[x, y] for x, y in self.messages],
134
+ offset=self.offset,
135
+ sep_style=self.sep_style,
136
+ sep=self.sep,
137
+ sep2=self.sep2,
138
+ version=self.version)
139
+
140
+
141
+
142
+
143
+ conv_phi_v0 = Conversation(
144
+ system="A chat between a curious user and an artificial intelligence assistant. "
145
+ "The assistant gives helpful, detailed, and polite answers to the user's questions.",
146
+ roles=("USER", "ASSISTANT"),
147
+ version="phi",
148
+ messages=(),
149
+ offset=0,
150
+ sep_style=SeparatorStyle.TWO,
151
+ sep=" ",
152
+ sep2="<|endoftext|>",
153
+ )
154
+
155
+
156
+ def load_image_from_base64(image):
157
+ return Image.open(BytesIO(base64.b64decode(image)))
158
+
159
+
160
+ def expand2square(pil_img, background_color):
161
+ width, height = pil_img.size
162
+ if width == height:
163
+ return pil_img
164
+ elif width > height:
165
+ result = Image.new(pil_img.mode, (width, width), background_color)
166
+ result.paste(pil_img, (0, (width - height) // 2))
167
+ return result
168
+ else:
169
+ result = Image.new(pil_img.mode, (height, height), background_color)
170
+ result.paste(pil_img, ((height - width) // 2, 0))
171
+ return result
172
+
173
+
174
+ def process_images(images, image_processor, model_cfg):
175
+ image_aspect_ratio = getattr(model_cfg, "image_aspect_ratio", None)
176
+ new_images = []
177
+ if image_aspect_ratio == 'pad':
178
+ for image in images:
179
+ image = expand2square(image, tuple(int(x*255) for x in image_processor.image_mean))
180
+ image = image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0]
181
+ new_images.append(image)
182
+ else:
183
+ return image_processor(images, return_tensors='pt')['pixel_values']
184
+ if all(x.shape == new_images[0].shape for x in new_images):
185
+ new_images = torch.stack(new_images, dim=0)
186
+ return new_images
187
+
188
+
189
+ def tokenizer_image_token(prompt, tokenizer, image_token_index=IMAGE_TOKEN_INDEX, return_tensors=None):
190
+ prompt_chunks = [tokenizer(chunk).input_ids for chunk in prompt.split('<image>')]
191
+
192
+ def insert_separator(X, sep):
193
+ return [ele for sublist in zip(X, [sep]*len(X)) for ele in sublist][:-1]
194
+
195
+ input_ids = []
196
+ offset = 0
197
+ if len(prompt_chunks) > 0 and len(prompt_chunks[0]) > 0 and prompt_chunks[0][0] == tokenizer.bos_token_id:
198
+ offset = 1
199
+ input_ids.append(prompt_chunks[0][0])
200
+
201
+ for x in insert_separator(prompt_chunks, [image_token_index] * (offset + 1)):
202
+ input_ids.extend(x[offset:])
203
+
204
+ if return_tensors is not None:
205
+ if return_tensors == 'pt':
206
+ return torch.tensor(input_ids, dtype=torch.long)
207
+ raise ValueError(f'Unsupported tensor type: {return_tensors}')
208
+ return input_ids
209
+
210
+ def load_image(image_file):
211
+ if image_file.startswith("http") or image_file.startswith("https"):
212
+ response = requests.get(image_file)
213
+ image = Image.open(BytesIO(response.content)).convert("RGB")
214
+ else:
215
+ image = Image.open(image_file).convert("RGB")
216
+ return image
217
+
218
+
219
+ def make_divisible(
220
+ v: Union[float, int],
221
+ divisor: Optional[int] = 8,
222
+ min_value: Optional[Union[float, int]] = None,
223
+ ) -> Union[float, int]:
224
+ """
225
+ This function is taken from the original tf repo.
226
+ It ensures that all layers have a channel number that is divisible by the divisor
227
+ It can be seen at:
228
+ https://github.com/tensorflow/models/blob/2cfc99eff5e5eb729c6793d2f3d03aa1c9be2b15/research/slim/nets/mobilenet/mobilenet.py#L62
229
+ Args:
230
+ v: input value
231
+ divisor: default to 8
232
+ min_value: minimum divisor value
233
+ Returns:
234
+ new_v: new divisible value
235
+ """
236
+ if min_value is None:
237
+ min_value = divisor
238
+ new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
239
+ # Make sure that round down does not go down by more than 10%.
240
+ if new_v < 0.9 * v:
241
+ new_v += divisor
242
+ return new_v
243
+
244
+
245
+ def compute_heads(model_dim: int, head_dim: int) -> int:
246
+ """Compute the number of heads.
247
+ Args:
248
+ model_dim: Model dimension.
249
+ head_dim: Head dimension.
250
+ Returns:
251
+ An integer denoting number of heads in multi-head attention is returned.
252
+ Raises:
253
+ ValueError: if model dimension is not divisible by head dimension.
254
+ """
255
+ if model_dim % head_dim == 0:
256
+ return model_dim // head_dim
257
+ else:
258
+ raise ValueError(
259
+ f"Model dimension should be divisible by head dimension. Got: {model_dim} and {head_dim}."
260
+ )
261
+
262
+
263
+ OpenELM_CONFIGS = {
264
+ "OpenELM-270M": dict(
265
+ num_transformer_layers=16,
266
+ model_dim=1280,
267
+ head_dim=64,
268
+ num_gqa_groups=4,
269
+ normalize_qk_projections=True,
270
+ share_input_output_layers=True,
271
+ # Vary the FFN and QKV multipliers to create variable FFN and attention layers respectively.
272
+ ffn_multipliers=(0.5, 4.0),
273
+ qkv_multipliers=(0.5, 1.0),
274
+ ),
275
+ "OpenELM-450M": dict(
276
+ num_transformer_layers=20,
277
+ model_dim=1536,
278
+ head_dim=64,
279
+ num_gqa_groups=4,
280
+ normalize_qk_projections=True,
281
+ share_input_output_layers=True,
282
+ # Vary the FFN and QKV multipliers to create variable FFN and attention layers respectively.
283
+ ffn_multipliers=(0.5, 4.0),
284
+ qkv_multipliers=(0.5, 1.0),
285
+ ),
286
+ "OpenELM-1_1B": dict(
287
+ num_transformer_layers=28,
288
+ model_dim=2048,
289
+ head_dim=64,
290
+ num_gqa_groups=4,
291
+ normalize_qk_projections=True,
292
+ share_input_output_layers=True,
293
+ # Vary the FFN and QKV multipliers to create variable FFN and attention layers respectively.
294
+ ffn_multipliers=(0.5, 4.0),
295
+ qkv_multipliers=(0.5, 1.0),
296
+ ),
297
+ "OpenELM-3B": dict(
298
+ num_transformer_layers=36,
299
+ model_dim=3072,
300
+ head_dim=128,
301
+ num_gqa_groups=4,
302
+ normalize_qk_projections=True,
303
+ share_input_output_layers=True,
304
+ # Vary the FFN and QKV multipliers to create variable FFN and attention layers respectively.
305
+ ffn_multipliers=(0.5, 4.0),
306
+ qkv_multipliers=(0.5, 1.0),
307
+ ),
308
+ }
309
+
310
+
311
+ class OpenELMConfig(PretrainedConfig):
312
+ r"""
313
+ This is the configuration class to store the configuration of a [`OpenELMModel`]. It is used to instantiate an OpenELM model according to the specified arguments, defining the model architecture.
314
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
315
+ documentation from [`PretrainedConfig`] for more information.
316
+ Args:
317
+ vocab_size (`int`, *optional*, defaults to 32000):
318
+ Vocabulary size of the OpenELM model.
319
+ max_context_length (`int`, *optional*, defaults to 2048):
320
+ Maximum number of input tokens.
321
+ num_transformer_layers (`int`, *optional*, defaults to 12):
322
+ Number of hidden layers in the Transformer decoder.
323
+ model_dim (`int`, *optional*, defaults to 2048):
324
+ Dimension of the hidden representations.
325
+ head_dim (`int`, *optional*, defaults to 128):
326
+ The attention head dimension.
327
+ qkv_multipliers (`Union[Number, List[Number]]`, *optional*, defaults to 1.0):
328
+ If the qkv_multipliers is a Number, then all attention layers have the same latent dimensions,
329
+ resulting in uniform allocation of parameters.
330
+ If the qkv_multipliers is a List of Number, then each attention layer have different latent dimensions
331
+ assuming qkv_multipliers[0] != qkv_multipliers[1]. This results in variable allocation of parameters in attention layer.
332
+ This scaling is known as layer-wise or block-wise scaling: https://arxiv.org/abs/2008.00623
333
+ num_query_heads (`Union[int, None]`, *optional*, defaults to None):
334
+ The number of query heads, computed from `compute_heads(model_dim=model_dim, head_dim=head_dim)`.
335
+ num_gqa_groups (`int`, *optional*, defaults to 1):
336
+ This variable allows to switch between multi-head attention, group query attention, and multi-query attention.
337
+ When num_gqa_groups == 1, then it is multi-head attention.
338
+ When 1 < num_gqa_groups < num_heads and num_heads is divisible by num_gqa_groups, then it is group query attention
339
+ When num_gqa_groups == num_heads, then it is multi-query attention
340
+ ffn_multipliers (`Union[Number, List[Number]]`, *optional*, defaults to 4.0):
341
+ Feed-forward network (FFN) multipliers.
342
+ If the ffn_multipliers is a Number, then all FFN layers have the same latent dimensions,
343
+ resulting in uniform allocation of parameters.
344
+ If the ffn_multipliers is a List of Number, then each FFN layer have different latent dimensions
345
+ assuming ffn_multipliers[0] != ffn_multipliers[1]. This results in variable allocation of parameters in FFN layer.
346
+ This scaling is known as layer-wise or block-wise scaling: https://arxiv.org/abs/2008.00623
347
+ ffn_with_glu (`bool`, *optional*, defaults to True):
348
+ Whether to use FFN with Gated Linear Unit (GLU)
349
+ ffn_dim_divisor (`int`, *optional*, defaults to 256):
350
+ The ffn layer dimension divisor.
351
+ activation_fn_name (`str` or `function`, *optional*, defaults to `"swish"`):
352
+ The non-linear activation function (function or string) in the decoder.
353
+ normalization_layer_name (`str` or `function`, *optional*, defaults to `"rms_norm"`):
354
+ Type of normalization layer.
355
+ normalize_qk_projections (`bool`, *optional*, defaults to False):
356
+ Whether to normalize queries and keys after projections
357
+ share_input_output_layers (`bool`, *optional*, defaults to False):
358
+ Whether to share the embedding between input and output linear layer
359
+ rope_freq_constant (`int`, *optional*, defaults to 10000):
360
+ The base period of the RoPE embeddings.
361
+ rope_max_length (`int`, *optional*, defaults to 4096):
362
+ That rope_max_length is set to twice of max_context_length.
363
+ This allows flexibility in token lengths during training or fine-tuning.
364
+ initializer_range (`float`, *optional*, defaults to 0.02):
365
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
366
+ use_cache (`bool`, *optional*, defaults to `True`):
367
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
368
+ relevant if `config.is_decoder=True`.
369
+ bos_token_id (`int`, *optional*, defaults to 2):
370
+ Beginning of stream token id.
371
+ eos_token_id (`int`, *optional*, defaults to 1):
372
+ End of stream token id.
373
+ """
374
+
375
+ model_type = "openelm"
376
+
377
+ def __init__(
378
+ self,
379
+ vocab_size: int = 32000,
380
+ max_context_length: int = 2048,
381
+ num_transformer_layers: int = 12,
382
+ model_dim: int = 2048,
383
+ head_dim: int = 128,
384
+ qkv_multipliers: Union[Number, List[Number]] = 1.0,
385
+ num_query_heads: Union[int, None] = None,
386
+ num_gqa_groups: int = 1,
387
+ ffn_multipliers: Union[Number, List[Number]] = 4.0,
388
+ ffn_with_glu: bool = True,
389
+ ffn_dim_divisor: int = 256,
390
+ activation_fn_name: str = "swish",
391
+ normalization_layer_name: str = "rms_norm",
392
+ normalize_qk_projections: bool = False,
393
+ share_input_output_layers: bool = False,
394
+ rope_freq_constant: int = 10000,
395
+ rope_max_length: int = 4096,
396
+ initializer_range: float = 0.02,
397
+ use_cache: bool = True,
398
+ bos_token_id: int = 1,
399
+ eos_token_id: int = 2,
400
+ **kwargs,
401
+ ) -> None:
402
+ self.vocab_size = vocab_size
403
+ self.max_context_length = max_context_length
404
+ self.num_transformer_layers = num_transformer_layers
405
+ self.model_dim = model_dim
406
+ self.head_dim = head_dim
407
+ self.qkv_multipliers = qkv_multipliers
408
+ self.num_query_heads = num_query_heads
409
+ self.num_gqa_groups = num_gqa_groups
410
+ self.ffn_multipliers = ffn_multipliers
411
+ self.ffn_with_glu = ffn_with_glu
412
+ self.ffn_dim_divisor = ffn_dim_divisor
413
+ self.activation_fn_name = activation_fn_name
414
+ self.normalization_layer_name = normalization_layer_name
415
+ self.normalize_qk_projections = normalize_qk_projections
416
+ self.share_input_output_layers = share_input_output_layers
417
+ self.rope_freq_constant = rope_freq_constant
418
+ self.rope_max_length = rope_max_length
419
+ self.num_query_heads = (
420
+ compute_heads(model_dim=model_dim, head_dim=head_dim)
421
+ if num_query_heads is None
422
+ else num_query_heads
423
+ )
424
+ self.initializer_range = initializer_range
425
+
426
+ self.__post_init__()
427
+ super().__init__(
428
+ use_cache=use_cache,
429
+ bos_token_id=bos_token_id,
430
+ eos_token_id=eos_token_id,
431
+ **kwargs,
432
+ )
433
+
434
+ def __post_init__(self) -> None:
435
+ if self.num_gqa_groups is not None:
436
+ head_multiple_of = self.num_gqa_groups
437
+ else:
438
+ head_multiple_of = 2
439
+
440
+ if isinstance(self.qkv_multipliers, Number):
441
+ # All attention layers have the same latent dimensions, resulting in uniform allocation of parameters.
442
+ qkv_dim = make_divisible(
443
+ self.model_dim * self.qkv_multipliers,
444
+ divisor=self.head_dim * head_multiple_of,
445
+ )
446
+ query_dims = [int(qkv_dim)] * self.num_transformer_layers
447
+
448
+ elif (
449
+ isinstance(self.qkv_multipliers, (tuple, list))
450
+ and len(self.qkv_multipliers) == 2
451
+ ):
452
+ # Each attention layer have different latent dimensions assuming qkv_multipliers[0] != qkv_multipliers[1].
453
+ # This results in variable allocation of parameters in attention layer.
454
+ # This scaling is known as layer-wise or block-wise scaling: https://arxiv.org/abs/2008.00623
455
+ qkv_multipliers = [
456
+ round(v, 2)
457
+ for v in np.linspace(
458
+ self.qkv_multipliers[0],
459
+ self.qkv_multipliers[1],
460
+ num=self.num_transformer_layers,
461
+ dtype=float,
462
+ )
463
+ ]
464
+ # Make sure that scaled model dimension is divisible by scaled head dimension.
465
+ query_dims = [
466
+ int(
467
+ make_divisible(
468
+ self.model_dim * m, divisor=self.head_dim * head_multiple_of
469
+ )
470
+ )
471
+ for m in qkv_multipliers
472
+ ]
473
+ else:
474
+ raise NotImplementedError(
475
+ f"QKV multipliers should be a single number or a list containing exactly two numbers. Got: {qkv_multipliers}."
476
+ )
477
+
478
+ # compute the number of query, key, and value heads
479
+ # For multi-head and multi-query attention, the number of heads for query, key, and value are the same.
480
+ # For group query attention, the number of key and value heads are the same.
481
+ self.num_query_heads = [
482
+ int(compute_heads(q_dim, self.head_dim)) for q_dim in query_dims
483
+ ]
484
+ self.num_kv_heads = [
485
+ q_heads // self.num_gqa_groups for q_heads in self.num_query_heads
486
+ ]
487
+
488
+ # Feed-forward network (FFN) multipliers
489
+ if isinstance(self.ffn_multipliers, Number):
490
+ # All FFN layers have the same latent dimensions, resulting in uniform allocation of parameters.
491
+ self.ffn_multipliers = [self.ffn_multipliers] * self.num_transformer_layers
492
+ elif isinstance(self.ffn_multipliers, (tuple, list)):
493
+ # Each FFN layer have different latent dimensions assuming ffn_multipliers[0] != ffn_multipliers[1].
494
+ # This results in variable allocation of parameters in FFN layer.
495
+ # This scaling is known as layer-wise or block-wise scaling: https://arxiv.org/abs/2008.00623
496
+ if len(self.ffn_multipliers) == 2:
497
+ self.ffn_multipliers = [
498
+ round(v, 2)
499
+ for v in np.linspace(
500
+ self.ffn_multipliers[0],
501
+ self.ffn_multipliers[1],
502
+ num=self.num_transformer_layers,
503
+ dtype=float,
504
+ )
505
+ ]
506
+ else:
507
+ assert (
508
+ len(self.ffn_multipliers) == self.num_transformer_layers
509
+ ), f"{len(self.ffn_multipliers)=}!={self.num_transformer_layers=}"
510
+ else:
511
+ raise NotImplementedError(
512
+ f"FFN multipliers should be a single number or a list containing exactly two numbers. Got: {qkv_multipliers}."
513
+ )
514
+
515
+ # check num_query_heads divisible by num_kv_heads for every layer
516
+ for layer_idx in range(len(query_dims)):
517
+ assert self.num_query_heads[layer_idx] % self.num_kv_heads[layer_idx] == 0
518
+
519
+ class OpenELMRMSNorm(nn.Module):
520
+ def __init__(self, num_features: int, eps: float = 1e-6):
521
+ """
522
+ Initialize the OpenELMRMSNorm normalization layer.
523
+ Args:
524
+ dim (int): The dimension of the input tensor.
525
+ eps (float, optional): A small value added to the denominator for numerical stability. Default is 1e-6.
526
+ Attributes:
527
+ eps (float): A small value added to the denominator for numerical stability.
528
+ weight (nn.Parameter): Learnable scaling parameter.
529
+ """
530
+ super().__init__()
531
+ self.eps = eps
532
+ self.weight = nn.Parameter(torch.ones(num_features))
533
+ self.num_features = num_features
534
+
535
+ def _norm(self, x: Tensor) -> Tensor:
536
+ """
537
+ Apply the OpenELMRMSNorm normalization to the input tensor.
538
+ Args:
539
+ x (torch.Tensor): The input tensor.
540
+ Returns:
541
+ torch.Tensor: The normalized tensor.
542
+ """
543
+ return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
544
+
545
+ def forward(self, x: Tensor) -> Tensor:
546
+ """
547
+ Forward pass through the OpenELMRMSNorm layer.
548
+ Args:
549
+ x (torch.Tensor): The input tensor.
550
+ Returns:
551
+ torch.Tensor: The output tensor after applying OpenELMRMSNorm.
552
+ """
553
+ output = self._norm(x.float()).type_as(x)
554
+ return output * self.weight
555
+
556
+ def extra_repr(self) -> str:
557
+ return (
558
+ super().extra_repr() + f"num_features={self.num_features}, eps={self.eps}"
559
+ )
560
+
561
+
562
+ class OpenELMPreTrainedModel(PreTrainedModel):
563
+ config_class = OpenELMConfig
564
+ base_model_prefix = "transformer"
565
+ supports_gradient_checkpointing = True
566
+ _no_split_modules = ["OpenELMDecoderLayer"]
567
+ _skip_keys_device_placement = "past_key_values"
568
+
569
+ def __init__(self, *inputs, **kwargs) -> None:
570
+ super().__init__(*inputs, **kwargs)
571
+
572
+ def _init_weights(self, module: nn.Module) -> None:
573
+ """Initialize the weights."""
574
+ if isinstance(module, nn.Linear):
575
+ # Slightly different from the TF version which uses truncated_normal for initialization
576
+ # cf https://github.com/pytorch/pytorch/pull/5617
577
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
578
+ if module.bias is not None:
579
+ module.bias.data.zero_()
580
+ elif isinstance(module, nn.Embedding):
581
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
582
+ if module.padding_idx is not None:
583
+ module.weight.data[module.padding_idx].zero_()
584
+ elif isinstance(module, OpenELMRMSNorm):
585
+ module.weight.data.fill_(1.0)
586
+
587
+
588
+ def _rotate_half(x: Tensor) -> Tensor:
589
+ x1, x2 = x.chunk(2, dim=-1)
590
+ return torch.cat((-x2, x1), dim=-1)
591
+
592
+
593
+ def _apply_rotary_pos_emb(x: Tensor, pos_sin: Tensor, pos_cos: Tensor) -> Tensor:
594
+ return (x * pos_cos) + (_rotate_half(x) * pos_sin)
595
+
596
+
597
+ class OpenELMRotaryEmbedding(torch.nn.Module):
598
+ """
599
+ The rotary position embeddings (aka RoPE) from `RoFormer <https://arxiv.org/abs/2104.09864>`_.
600
+ RoPE encodes the position information of tokens using a rotation matrix, and is able to capture
601
+ explicit relative positional dependencies.
602
+ Args:
603
+ model_dim: The dimensionality of the model's hidden state.
604
+ max_seq_length: Maximum sequence length.
605
+ freq_constant: A constant used for computing frequencies.
606
+ """
607
+
608
+ def __init__(
609
+ self, model_dim: int, max_seq_length: int, freq_constant: int = 10000
610
+ ) -> None:
611
+ inv_freq = 1.0 / (
612
+ freq_constant
613
+ ** (torch.arange(0, model_dim, 2, dtype=torch.float32) / model_dim)
614
+ )
615
+ super().__init__()
616
+
617
+ self.model_dim = model_dim
618
+ self.freq_constant = freq_constant
619
+ self.max_seq_length = max_seq_length
620
+
621
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
622
+ self._cached_cos = None
623
+ self._cached_sin = None
624
+ self._cached_seq_length = max_seq_length
625
+ self._compute_sin_cos_embeddings(max_seq_length)
626
+
627
+ def extra_repr(self) -> str:
628
+ return f"\tmodel_dim={self.model_dim}, max_seq_length={self.max_seq_length}, freq_constant={self.freq_constant}"
629
+
630
+ def _compute_sin_cos_embeddings(
631
+ self,
632
+ key_len: int,
633
+ key_device: torch.device = torch.device("cpu"),
634
+ key_dtype: torch.dtype = torch.float32,
635
+ ) -> None:
636
+ """
637
+ Compute sine and cos embeddings.
638
+ Args:
639
+ key_len: Number of tokens in the key embeddings in the transformer model.
640
+ device: Device where the key embeddings are stored.
641
+ key_dtype: Data type of the key embeddings.
642
+ Returns:
643
+ None
644
+ ...note:
645
+ We recalculate the sine and cosine embeddings if any of the following conditions are met:
646
+ 1. The number of tokens in key embeddings are greater than the cached sequence length.
647
+ 2. Sine and cosine caches are empty.
648
+ 3. The device and data type of sine and cosine embeddings does not match with the key embeddings.
649
+ """
650
+ if (
651
+ key_len > self._cached_seq_length
652
+ or self._cached_cos is None
653
+ or (self._cached_cos is not None and self._cached_cos.device != key_device)
654
+ or (self._cached_cos is not None and self._cached_cos.dtype != key_dtype)
655
+ or self._cached_sin is None
656
+ or (self._cached_sin is not None and self._cached_sin.device != key_device)
657
+ or (self._cached_sin is not None and self._cached_sin.dtype != key_dtype)
658
+ ):
659
+ self._cached_seq_length = max(key_len, self._cached_seq_length)
660
+
661
+ # The shape of 'pos_index' is [number of key tokens]
662
+ pos_index = torch.arange(
663
+ self._cached_seq_length,
664
+ dtype=torch.float32,
665
+ device=self.inv_freq.device,
666
+ )
667
+ # The shape of 'pos_index_theta' is [number of key tokens, model dimension]
668
+ pos_index_theta = torch.einsum("i,j->ij", pos_index, self.inv_freq)
669
+ # The shape of 'emb' is [number of key tokens, model dimension]
670
+ emb = torch.cat((pos_index_theta, pos_index_theta), dim=-1)
671
+
672
+ # the shape of cos and sin embeddings is [number of key tokens, model_dim]
673
+ cos_emb = emb.cos().to(dtype=key_dtype, device=key_device)
674
+ sin_emb = emb.sin().to(dtype=key_dtype, device=key_device)
675
+
676
+ # the shape of cached cos and sin embeddings is [1, 1, number of key tokens, model_dim]
677
+ self._cached_cos = cos_emb[None, None, :, :]
678
+ self._cached_sin = sin_emb[None, None, :, :]
679
+
680
+ def forward(
681
+ self,
682
+ query: torch.Tensor,
683
+ key: torch.Tensor,
684
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
685
+ """
686
+ The forward function of RoPE embeddings.
687
+ Args:
688
+ query: Query embeddings in the transformer model. The shape of query embeddings is
689
+ [Batch, number of query heads, number of query tokens, model dimension].
690
+ key: Key embeddings in the transformer model. The shape of key embeddings is
691
+ [Batch, number of key heads, number of key tokens, model dimension].
692
+ Returns:
693
+ A tuple containing the query and key embeddings with positional information. The shape of the returned query
694
+ and key embeddings is the same as the input query and key embeddings respectively.
695
+ ...note:
696
+ The RoPE embedding computation is done in full-precision. After the computation, input query and key tensors
697
+ are casted to original input datatype.
698
+ """
699
+ dim = key.shape[-1]
700
+ key_len = key.shape[2]
701
+ query_len = query.shape[2]
702
+
703
+ assert dim == self.model_dim
704
+ assert key.device == query.device
705
+ assert key.dtype == query.dtype
706
+
707
+ # In the context of self-attention, the lengths of keys and queries are equal.
708
+ # However, in generation tasks, such as predicting the next token in a sequence, the lengths of keys and queries
709
+ # can differ. For instance, when employing key-value (KV) caching for sequence prediction, the keys
710
+ # represent embeddings of previous tokens and the current token, while the query corresponds
711
+ # to the embedding of the current token only.
712
+ assert (
713
+ key_len >= query_len
714
+ ), "Number of keys has to be greater than or equal to number of queries."
715
+
716
+ query_float = query.float()
717
+ key_float = key.float()
718
+
719
+ self._compute_sin_cos_embeddings(
720
+ key_len, key_device=key_float.device, key_dtype=key_float.dtype
721
+ )
722
+ query_float = _apply_rotary_pos_emb(
723
+ x=query_float,
724
+ pos_sin=self._cached_sin[..., key_len - query_len : key_len, :],
725
+ pos_cos=self._cached_cos[..., key_len - query_len : key_len, :],
726
+ )
727
+ key_float = _apply_rotary_pos_emb(
728
+ x=key_float,
729
+ pos_sin=self._cached_sin[..., :key_len, :],
730
+ pos_cos=self._cached_cos[..., :key_len, :],
731
+ )
732
+
733
+ return query_float.type_as(query), key_float.type_as(key)
734
+
735
+
736
+ class OpenELMMultiHeadCausalAttention(nn.Module):
737
+ def __init__(self, config: OpenELMConfig, layer_idx: int) -> None:
738
+ super().__init__()
739
+ self.layer_idx = layer_idx
740
+ head_dim = config.head_dim
741
+ q_heads = config.num_query_heads[layer_idx]
742
+ k_heads = config.num_kv_heads[layer_idx]
743
+ v_heads = config.num_kv_heads[layer_idx]
744
+
745
+ self.qkv_proj = nn.Linear(
746
+ in_features=config.model_dim,
747
+ out_features=(q_heads + k_heads + v_heads) * head_dim,
748
+ bias=False,
749
+ )
750
+
751
+ self.pos_embedding = OpenELMRotaryEmbedding(
752
+ model_dim=config.head_dim,
753
+ max_seq_length=config.rope_max_length,
754
+ freq_constant=config.rope_freq_constant,
755
+ )
756
+
757
+ if config.normalize_qk_projections:
758
+ self.q_norm = OpenELMRMSNorm(
759
+ num_features=config.head_dim,
760
+ )
761
+ self.k_norm = OpenELMRMSNorm(
762
+ num_features=config.head_dim,
763
+ )
764
+ else:
765
+ self.q_norm = None
766
+ self.k_norm = None
767
+
768
+ self.out_proj = nn.Linear(
769
+ in_features=q_heads * head_dim,
770
+ out_features=config.model_dim,
771
+ bias=False,
772
+ )
773
+
774
+ self.head_dim = config.head_dim
775
+ self.num_q_heads = q_heads
776
+ self.num_k_heads = k_heads
777
+ self.num_v_heads = v_heads
778
+ self.transformer_dim = config.model_dim
779
+ self.num_groups = self.num_q_heads // self.num_k_heads
780
+
781
+ def extra_repr(self) -> str:
782
+ return (
783
+ super().extra_repr()
784
+ + f"query_heads={self.num_q_heads}, key_heads={self.num_k_heads}, value_heads={self.num_v_heads}"
785
+ )
786
+
787
+ def forward(
788
+ self,
789
+ hidden_states: torch.Tensor,
790
+ attention_mask: Optional[torch.Tensor] = None,
791
+ past_key_value: Optional[Cache] = None,
792
+ output_attentions: bool = False,
793
+ use_cache: bool = False,
794
+ cache_position: Optional[torch.LongTensor] = None,
795
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
796
+ """
797
+ Forward pass of multi-head self-attention.
798
+ Args:
799
+ hidden_states: Input tensor of the shape [batch size, sequence length, model dimension].
800
+ past_key_value: Tensor storing the cached keys and values.
801
+ output_attentions: output attention weights.
802
+ use_cache: Specifies whether to use kv-cache for generation.
803
+ cache_position: used for updating the kv-cache.
804
+ Returns:
805
+ The output of the same shape as the input, optionally with a tensor containing cached keys and values.
806
+ """
807
+
808
+ # scaled_dot_product_attention does not return attention weights, set output_attentions to False
809
+ output_attentions = False
810
+ batch_size, seq_length, d_model = hidden_states.size()
811
+
812
+ # [B, S, d] --> [B, S, (q_h + k_h + v_h) * h]
813
+ qkv = self.qkv_proj(hidden_states)
814
+ # [B, S, (q_h + k_h + v_h) * h] --> [B, S, (q_h + k_h + v_h), h]
815
+ qkv = qkv.reshape(
816
+ batch_size,
817
+ seq_length,
818
+ self.num_q_heads + self.num_k_heads + self.num_v_heads,
819
+ self.head_dim,
820
+ )
821
+ # [B, S, (q_h + k_h + v_h), h] --> [B, (q_h + k_h + v_h), S, h]
822
+ qkv = qkv.transpose(1, 2)
823
+ # [B, (q_h + k_h + v_h), S, h] --> [B, q_h, S h], [B, k_h, S, h], [B, v_h, S, h]
824
+ queries, keys, values = qkv.split(
825
+ [self.num_q_heads, self.num_k_heads, self.num_v_heads], dim=1
826
+ )
827
+
828
+ if self.q_norm is not None:
829
+ queries = self.q_norm(queries)
830
+
831
+ if self.k_norm is not None:
832
+ keys = self.k_norm(keys)
833
+
834
+ past_key_value = getattr(self, "past_key_value", past_key_value)
835
+
836
+ if past_key_value is not None:
837
+ # sin and cos are specific to RoPE models; position_ids needed for the static cache
838
+ # cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
839
+ cache_kwargs = {"cache_position": cache_position}
840
+ keys, values = past_key_value.update(
841
+ keys, values, self.layer_idx, cache_kwargs
842
+ )
843
+
844
+ # Add positional embedding
845
+ queries, keys = self.pos_embedding(queries, keys)
846
+
847
+ if self.num_groups != 1:
848
+ # GQA
849
+ # [B, k_h, S, h] --> [B, q_h, S, h]
850
+ keys = keys.repeat_interleave(self.num_groups, dim=1)
851
+ # [B, v_h, S, h] --> [B, q_h, S, h]
852
+ values = values.repeat_interleave(self.num_groups, dim=1)
853
+
854
+ causal_mask = attention_mask
855
+ if attention_mask is not None and cache_position is not None:
856
+ causal_mask = causal_mask[:, :, cache_position, : keys.shape[-2]]
857
+
858
+ attn_output = F.scaled_dot_product_attention(
859
+ queries,
860
+ keys,
861
+ values,
862
+ attn_mask=causal_mask,
863
+ dropout_p=0,
864
+ )
865
+
866
+ attn_output = attn_output.transpose(1, 2).contiguous()
867
+ attn_output = attn_output.reshape(
868
+ batch_size, seq_length, self.num_q_heads * self.head_dim
869
+ )
870
+ attn_output = self.out_proj(attn_output)
871
+ if not output_attentions:
872
+ attn_weights = None
873
+ return attn_output, attn_weights, past_key_value
874
+
875
+
876
+ class OpenELMFeedForwardNetwork(nn.Module):
877
+ def __init__(self, config: OpenELMConfig, layer_idx: int) -> None:
878
+ super().__init__()
879
+ ffn_multiplier = config.ffn_multipliers[layer_idx]
880
+ intermediate_dim = int(
881
+ make_divisible(
882
+ ffn_multiplier * config.model_dim,
883
+ divisor=config.ffn_dim_divisor,
884
+ )
885
+ )
886
+ if config.ffn_with_glu:
887
+ # FFN with Gated linear unit, as described in https://arxiv.org/abs/2002.05202v1.
888
+ self.proj_1 = nn.Linear(
889
+ in_features=config.model_dim,
890
+ out_features=2 * intermediate_dim,
891
+ bias=False,
892
+ )
893
+ self.proj_2 = nn.Linear(
894
+ in_features=intermediate_dim,
895
+ out_features=config.model_dim,
896
+ bias=False,
897
+ )
898
+ self.ffn_with_glu = True
899
+ else:
900
+ # Standard FFN, as described in https://arxiv.org/abs/1706.03762
901
+ self.proj_1 = nn.Linear(
902
+ in_features=config.model_dim,
903
+ out_features=intermediate_dim,
904
+ bias=False,
905
+ )
906
+ self.proj_2 = nn.Linear(
907
+ in_features=intermediate_dim,
908
+ out_features=config.model_dim,
909
+ bias=False,
910
+ )
911
+ self.ffn_with_glu = False
912
+
913
+ self.act = ACT2FN[config.activation_fn_name]
914
+
915
+ def extra_repr(self) -> str:
916
+ return super().extra_repr() + f"(ffn_with_glu) : {self.ffn_with_glu}"
917
+
918
+ def forward(self, x: Tensor) -> Tensor:
919
+ """Forward function of FFN layer.
920
+ Args:
921
+ x: Input tensor of the shape [batch size, sequence length, model dimension].
922
+ Returns:
923
+ A tensor of the same shape as the input.
924
+ """
925
+ if self.ffn_with_glu:
926
+ y_12 = self.proj_1(x)
927
+ y_1, y_2 = y_12.chunk(2, dim=-1)
928
+ y = self.act(y_1) * y_2
929
+ return self.proj_2(y)
930
+ else:
931
+ return self.proj_2(self.act(self.proj_1(x)))
932
+
933
+
934
+ class OpenELMDecoderLayer(nn.Module):
935
+ def __init__(self, config: OpenELMConfig, layer_idx: int) -> None:
936
+ super().__init__()
937
+ self.attn = OpenELMMultiHeadCausalAttention(config=config, layer_idx=layer_idx)
938
+ self.ffn = OpenELMFeedForwardNetwork(config=config, layer_idx=layer_idx)
939
+ self.ffn_norm = OpenELMRMSNorm(
940
+ num_features=config.model_dim,
941
+ )
942
+ self.attn_norm = OpenELMRMSNorm(
943
+ num_features=config.model_dim,
944
+ )
945
+
946
+ def forward(
947
+ self,
948
+ hidden_states: torch.Tensor,
949
+ attention_mask: Optional[torch.Tensor] = None,
950
+ position_ids: Optional[torch.LongTensor] = None,
951
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
952
+ output_attentions: Optional[bool] = False,
953
+ use_cache: Optional[bool] = False,
954
+ cache_position: Optional[torch.LongTensor] = None,
955
+ **kwargs,
956
+ ) -> Tuple[
957
+ torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]
958
+ ]:
959
+ """
960
+ Args:
961
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
962
+ attention_mask (`torch.FloatTensor`, *optional*):
963
+ attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
964
+ query_sequence_length, key_sequence_length)` if default attention is used.
965
+ output_attentions (`bool`, *optional*):
966
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
967
+ returned tensors for more detail.
968
+ use_cache (`bool`, *optional*):
969
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
970
+ (see `past_key_values`).
971
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
972
+ """
973
+ residual = hidden_states
974
+ hidden_states = self.attn_norm(hidden_states)
975
+
976
+ # Self Attention
977
+ hidden_states, self_attn_weights, present_key_value = self.attn(
978
+ hidden_states=hidden_states,
979
+ attention_mask=attention_mask,
980
+ past_key_value=past_key_value,
981
+ output_attentions=output_attentions,
982
+ use_cache=use_cache,
983
+ cache_position=cache_position,
984
+ **kwargs,
985
+ )
986
+ hidden_states = residual + hidden_states
987
+
988
+ # Fully Connected
989
+ residual = hidden_states
990
+ hidden_states = self.ffn_norm(hidden_states)
991
+ hidden_states = self.ffn(hidden_states)
992
+ hidden_states = residual + hidden_states
993
+
994
+ outputs = (hidden_states,)
995
+
996
+ if output_attentions:
997
+ outputs += (self_attn_weights,)
998
+
999
+ if use_cache:
1000
+ outputs += (present_key_value,)
1001
+
1002
+ return outputs
1003
+
1004
+
1005
+ class OpenELMModel(OpenELMPreTrainedModel):
1006
+ config_class = OpenELMConfig
1007
+
1008
+ def __init__(self, config: OpenELMConfig):
1009
+ super().__init__(config)
1010
+ self.config = config
1011
+
1012
+ self.token_embeddings = nn.Embedding(
1013
+ embedding_dim=config.model_dim,
1014
+ num_embeddings=config.vocab_size,
1015
+ )
1016
+
1017
+ self.layers = nn.ModuleList(
1018
+ OpenELMDecoderLayer(config=config, layer_idx=layer_idx)
1019
+ for layer_idx in range(config.num_transformer_layers)
1020
+ )
1021
+ self.norm = OpenELMRMSNorm(num_features=config.model_dim)
1022
+ if config.share_input_output_layers:
1023
+ self.classifier = None
1024
+ else:
1025
+ self.classifier = nn.Linear(
1026
+ in_features=config.model_dim,
1027
+ out_features=config.vocab_size,
1028
+ bias=False,
1029
+ )
1030
+ self.num_transformer_layers = config.num_transformer_layers
1031
+ self.gradient_checkpointing = False
1032
+
1033
+ # Register a causal mask to separate causal and padding mask creation. Merging happens in the attention class.
1034
+ # NOTE: This is not friendly with TorchScript, ONNX, ExportedProgram serialization for very large `max_context_length`.
1035
+ causal_mask = torch.full(
1036
+ (config.max_context_length, config.max_context_length),
1037
+ fill_value=True,
1038
+ dtype=torch.bool,
1039
+ )
1040
+ self.register_buffer(
1041
+ "causal_mask", torch.triu(causal_mask, diagonal=1), persistent=False
1042
+ )
1043
+
1044
+ # Initialize weights and apply final processing
1045
+ self.post_init()
1046
+ self.reset_parameters(config=config)
1047
+
1048
+ def get_input_embeddings(self):
1049
+ return self.token_embeddings
1050
+
1051
+ def set_input_embeddings(self, new_embeddings: torch.Tensor):
1052
+ self.token_embeddings = new_embeddings
1053
+
1054
+ def reset_parameters(self, config: OpenELMConfig) -> None:
1055
+ """Initialize the layers in Language Model
1056
+ The initialization scheme is followed, following `OPT <https://arxiv.org/pdf/2205.01068.pdf>`_.
1057
+ Args:
1058
+ use_megatron_std: Use standard deviation as described in Megatron-LM.
1059
+ Returns:
1060
+ None
1061
+ """
1062
+ for module in self.modules():
1063
+ if isinstance(module, nn.Linear):
1064
+ std = module.in_features**-0.5
1065
+ torch.nn.init.normal_(module.weight, mean=0.0, std=std)
1066
+ if module.bias is not None:
1067
+ torch.nn.init.zeros_(module.bias)
1068
+ elif isinstance(module, nn.Embedding):
1069
+ std = module.embedding_dim**-0.5
1070
+ torch.nn.init.normal_(module.weight, mean=0.0, std=std)
1071
+ elif isinstance(module, OpenELMRMSNorm):
1072
+ if module.weight is not None:
1073
+ torch.nn.init.ones_(module.weight)
1074
+ if hasattr(module, "bias") and module.bias is not None:
1075
+ torch.nn.init.zeros_(module.bias)
1076
+
1077
+ model_dim = config.model_dim
1078
+ n_layers = config.num_transformer_layers
1079
+ std = (model_dim**-0.5) * ((2 * n_layers) ** -0.5)
1080
+ for param_name, param in self.named_parameters():
1081
+ if param_name.endswith("out_proj.weight") or param_name.endswith(
1082
+ "ffn.proj_2.weight"
1083
+ ):
1084
+ torch.nn.init.normal_(param, mean=0.0, std=std)
1085
+
1086
+ def forward(
1087
+ self,
1088
+ input_ids: torch.LongTensor = None,
1089
+ attention_mask: Optional[torch.Tensor] = None,
1090
+ position_ids: Optional[torch.LongTensor] = None,
1091
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1092
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1093
+ use_cache: Optional[bool] = None,
1094
+ output_attentions: Optional[bool] = None,
1095
+ output_hidden_states: Optional[bool] = None,
1096
+ return_dict: Optional[bool] = None,
1097
+ cache_position: Optional[torch.LongTensor] = None,
1098
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
1099
+ output_attentions = (
1100
+ output_attentions
1101
+ if output_attentions is not None
1102
+ else self.config.output_attentions
1103
+ )
1104
+ output_hidden_states = (
1105
+ output_hidden_states
1106
+ if output_hidden_states is not None
1107
+ else self.config.output_hidden_states
1108
+ )
1109
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
1110
+ return_dict = (
1111
+ return_dict if return_dict is not None else self.config.use_return_dict
1112
+ )
1113
+
1114
+ if (input_ids is None) ^ (inputs_embeds is not None):
1115
+ raise ValueError(
1116
+ "You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
1117
+ )
1118
+
1119
+ if self.gradient_checkpointing and self.training and use_cache:
1120
+ logger.warning_once(
1121
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
1122
+ )
1123
+ use_cache = False
1124
+
1125
+ if inputs_embeds is None:
1126
+ inputs_embeds = self.token_embeddings(input_ids)
1127
+
1128
+ past_seen_tokens = 0
1129
+ if use_cache: # kept for BC (cache positions)
1130
+ if not isinstance(past_key_values, StaticCache):
1131
+ past_key_values = DynamicCache.from_legacy_cache(past_key_values)
1132
+ past_seen_tokens = past_key_values.get_seq_length()
1133
+
1134
+ if cache_position is None:
1135
+ cache_position = torch.arange(
1136
+ past_seen_tokens,
1137
+ past_seen_tokens + inputs_embeds.shape[1],
1138
+ device=inputs_embeds.device,
1139
+ )
1140
+
1141
+ if position_ids is None:
1142
+ position_ids = cache_position.unsqueeze(0)
1143
+
1144
+ causal_mask = self._update_causal_mask(attention_mask, inputs_embeds)
1145
+
1146
+ # embed positions
1147
+ hidden_states = inputs_embeds
1148
+
1149
+ # decoder layers
1150
+ all_hidden_states = () if output_hidden_states else None
1151
+ all_self_attns = () if output_attentions else None
1152
+ next_decoder_cache = None
1153
+
1154
+ for decoder_layer in self.layers:
1155
+ if output_hidden_states:
1156
+ all_hidden_states += (hidden_states,)
1157
+
1158
+ if self.gradient_checkpointing and self.training:
1159
+ layer_outputs = self._gradient_checkpointing_func(
1160
+ decoder_layer.__call__,
1161
+ hidden_states,
1162
+ causal_mask,
1163
+ position_ids,
1164
+ past_key_values,
1165
+ output_attentions,
1166
+ use_cache,
1167
+ cache_position,
1168
+ )
1169
+ else:
1170
+ layer_outputs = decoder_layer(
1171
+ hidden_states,
1172
+ attention_mask=causal_mask,
1173
+ position_ids=position_ids,
1174
+ past_key_value=past_key_values,
1175
+ output_attentions=output_attentions,
1176
+ use_cache=use_cache,
1177
+ cache_position=cache_position,
1178
+ )
1179
+
1180
+ hidden_states = layer_outputs[0]
1181
+
1182
+ if use_cache:
1183
+ next_decoder_cache = layer_outputs[2 if output_attentions else 1]
1184
+
1185
+ if output_attentions:
1186
+ all_self_attns += (layer_outputs[1],)
1187
+
1188
+ hidden_states = self.norm(hidden_states)
1189
+
1190
+ # add hidden states from the last decoder layer
1191
+ if output_hidden_states:
1192
+ all_hidden_states += (hidden_states,)
1193
+
1194
+ next_cache = None
1195
+ if use_cache:
1196
+ next_cache = (
1197
+ next_decoder_cache.to_legacy_cache()
1198
+ if isinstance(next_decoder_cache, Cache)
1199
+ else next_decoder_cache
1200
+ )
1201
+ if not return_dict:
1202
+ return tuple(
1203
+ v
1204
+ for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
1205
+ if v is not None
1206
+ )
1207
+ return BaseModelOutputWithPast(
1208
+ last_hidden_state=hidden_states,
1209
+ past_key_values=next_cache,
1210
+ hidden_states=all_hidden_states,
1211
+ attentions=all_self_attns,
1212
+ )
1213
+
1214
+ def _update_causal_mask(self, attention_mask, input_tensor):
1215
+ if self.config._attn_implementation == "flash_attention_2":
1216
+ if attention_mask is not None and 0.0 in attention_mask:
1217
+ return attention_mask
1218
+ return None
1219
+
1220
+ batch_size, seq_length = input_tensor.shape[:2]
1221
+ dtype = input_tensor.dtype
1222
+ device = input_tensor.device
1223
+
1224
+ # support going beyond cached `max_position_embedding`
1225
+ if seq_length > self.causal_mask.shape[-1]:
1226
+ causal_mask = torch.full(
1227
+ (2 * self.causal_mask.shape[-1], 2 * self.causal_mask.shape[-1]),
1228
+ fill_value=1,
1229
+ )
1230
+ self.register_buffer(
1231
+ "causal_mask", torch.triu(causal_mask, diagonal=1), persistent=False
1232
+ )
1233
+
1234
+ # We use the current dtype to avoid any overflows
1235
+ min_dtype = torch.finfo(dtype).min
1236
+ causal_mask = (
1237
+ self.causal_mask[None, None, :, :].repeat(batch_size, 1, 1, 1).to(dtype)
1238
+ * min_dtype
1239
+ )
1240
+
1241
+ causal_mask = causal_mask.to(dtype=dtype, device=device)
1242
+ if attention_mask is not None and attention_mask.dim() == 2:
1243
+ mask_length = attention_mask.shape[-1]
1244
+ padding_mask = causal_mask[..., :mask_length].eq(0.0) * attention_mask[
1245
+ :, None, None, :
1246
+ ].eq(0.0)
1247
+ causal_mask[..., :mask_length] = causal_mask[..., :mask_length].masked_fill(
1248
+ padding_mask, min_dtype
1249
+ )
1250
+
1251
+ if self.config._attn_implementation == "sdpa" and attention_mask is not None:
1252
+ # For dynamo, rather use a check on fullgraph=True once this is possible (https://github.com/pytorch/pytorch/pull/120400).
1253
+ is_tracing = (
1254
+ torch.jit.is_tracing()
1255
+ or isinstance(input_tensor, torch.fx.Proxy)
1256
+ or (hasattr(torch, "_dynamo") and torch._dynamo.is_compiling())
1257
+ )
1258
+ if not is_tracing and torch.any(attention_mask != 1):
1259
+ # Attend to all tokens in masked rows from the causal_mask, for example the relevant first rows when
1260
+ # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
1261
+ # Details: https://github.com/pytorch/pytorch/issues/110213
1262
+ causal_mask = causal_mask.mul(
1263
+ ~torch.all(causal_mask == min_dtype, dim=-1, keepdim=True)
1264
+ ).to(dtype)
1265
+
1266
+ return causal_mask
1267
+
1268
+
1269
+ class OpenELMForCausalLM(OpenELMPreTrainedModel):
1270
+ _tied_weights_keys = ["lm_head.weight"]
1271
+
1272
+ def __init__(self, config: OpenELMConfig):
1273
+ super().__init__(config)
1274
+ self.transformer = OpenELMModel(config)
1275
+ self.vocab_size = config.vocab_size
1276
+ if config.share_input_output_layers:
1277
+ self.lm_head = None
1278
+ else:
1279
+ self.lm_head = nn.Linear(config.model_dim, config.vocab_size, bias=False)
1280
+
1281
+ # Initialize weights and apply final processing
1282
+ self.post_init()
1283
+
1284
+ def get_input_embeddings(self):
1285
+ return self.transformer.token_embeddings
1286
+
1287
+ def set_input_embeddings(self, value):
1288
+ self.transformer.token_embeddings = value
1289
+
1290
+ def get_output_embeddings(self):
1291
+ return self.lm_head
1292
+
1293
+ def set_output_embeddings(self, new_embeddings):
1294
+ self.lm_head = new_embeddings
1295
+
1296
+ def set_decoder(self, decoder):
1297
+ self.transformer = decoder
1298
+
1299
+ def get_decoder(self):
1300
+ return self.transformer
1301
+
1302
+ def forward(
1303
+ self,
1304
+ input_ids: torch.LongTensor = None,
1305
+ attention_mask: Optional[torch.Tensor] = None,
1306
+ position_ids: Optional[torch.LongTensor] = None,
1307
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1308
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1309
+ labels: Optional[torch.LongTensor] = None,
1310
+ use_cache: Optional[bool] = None,
1311
+ output_attentions: Optional[bool] = None,
1312
+ output_hidden_states: Optional[bool] = None,
1313
+ return_dict: Optional[bool] = None,
1314
+ cache_position: Optional[torch.LongTensor] = None,
1315
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
1316
+ output_attentions = (
1317
+ output_attentions
1318
+ if output_attentions is not None
1319
+ else self.config.output_attentions
1320
+ )
1321
+ output_hidden_states = (
1322
+ output_hidden_states
1323
+ if output_hidden_states is not None
1324
+ else self.config.output_hidden_states
1325
+ )
1326
+ return_dict = (
1327
+ return_dict if return_dict is not None else self.config.use_return_dict
1328
+ )
1329
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1330
+ outputs = self.transformer(
1331
+ input_ids=input_ids,
1332
+ attention_mask=attention_mask,
1333
+ position_ids=position_ids,
1334
+ past_key_values=past_key_values,
1335
+ inputs_embeds=inputs_embeds,
1336
+ use_cache=use_cache,
1337
+ output_attentions=output_attentions,
1338
+ output_hidden_states=output_hidden_states,
1339
+ return_dict=return_dict,
1340
+ cache_position=cache_position,
1341
+ )
1342
+
1343
+ hidden_states = outputs[0]
1344
+ if self.lm_head is None:
1345
+ # shared
1346
+ logits = F.linear(
1347
+ hidden_states, weight=self.transformer.token_embeddings.weight
1348
+ )
1349
+ else:
1350
+ logits = self.lm_head(hidden_states)
1351
+ logits = logits[:, : self.config.vocab_size]
1352
+ loss = None
1353
+ if labels is not None:
1354
+ # Shift so that tokens < n predict n
1355
+ shift_logits = logits[..., :-1, :].contiguous()
1356
+ shift_labels = labels[..., 1:].contiguous()
1357
+ # Flatten the tokens
1358
+ loss_fct = CrossEntropyLoss()
1359
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
1360
+ shift_labels = shift_labels.view(-1)
1361
+ # Enable model parallelism
1362
+ shift_labels = shift_labels.to(shift_logits.device)
1363
+ loss = loss_fct(shift_logits, shift_labels)
1364
+
1365
+ if not return_dict:
1366
+ output = (logits,) + outputs[1:]
1367
+ return (loss,) + output if loss is not None else output
1368
+
1369
+ return CausalLMOutputWithPast(
1370
+ loss=loss,
1371
+ logits=logits,
1372
+ past_key_values=outputs.past_key_values,
1373
+ hidden_states=outputs.hidden_states,
1374
+ attentions=outputs.attentions,
1375
+ )
1376
+
1377
+ def prepare_inputs_for_generation(
1378
+ self,
1379
+ input_ids,
1380
+ past_key_values=None,
1381
+ attention_mask=None,
1382
+ inputs_embeds=None,
1383
+ **kwargs,
1384
+ ):
1385
+ past_length = 0
1386
+ if past_key_values is not None:
1387
+ if isinstance(past_key_values, Cache):
1388
+ cache_length = past_key_values.get_seq_length()
1389
+ past_length = past_key_values.seen_tokens
1390
+ max_cache_length = past_key_values.get_max_length()
1391
+ else:
1392
+ cache_length = past_length = past_key_values[0][0].shape[2]
1393
+ max_cache_length = None
1394
+
1395
+ # Keep only the unprocessed tokens:
1396
+ # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
1397
+ # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
1398
+ # input)
1399
+ if (
1400
+ attention_mask is not None
1401
+ and attention_mask.shape[1] > input_ids.shape[1]
1402
+ ):
1403
+ input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
1404
+ # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
1405
+ # input_ids based on the past_length.
1406
+ elif past_length < input_ids.shape[1]:
1407
+ input_ids = input_ids[:, past_length:]
1408
+ # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
1409
+
1410
+ # If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
1411
+ if (
1412
+ max_cache_length is not None
1413
+ and attention_mask is not None
1414
+ and cache_length + input_ids.shape[1] > max_cache_length
1415
+ ):
1416
+ attention_mask = attention_mask[:, -max_cache_length:]
1417
+
1418
+ position_ids = kwargs.get("position_ids", None)
1419
+ if attention_mask is not None and position_ids is None:
1420
+ # create position_ids on the fly for batch generation
1421
+ position_ids = attention_mask.long().cumsum(-1) - 1
1422
+ position_ids.masked_fill_(attention_mask == 0, 1)
1423
+ if past_key_values:
1424
+ position_ids = position_ids[:, -input_ids.shape[1] :]
1425
+
1426
+ if self.generation_config.cache_implementation == "static":
1427
+ # generation with static cache
1428
+ cache_position = kwargs.get("cache_position", None)
1429
+ if cache_position is None:
1430
+ past_length = 0
1431
+ else:
1432
+ past_length = cache_position[-1] + 1
1433
+ input_ids = input_ids[:, past_length:]
1434
+ position_ids = position_ids[:, past_length:]
1435
+
1436
+ # we should only keep a `cache_position` in generate, and do +=1.
1437
+ # same goes for position ids. Could also help with continued generation.
1438
+ cache_position = torch.arange(
1439
+ past_length,
1440
+ past_length + position_ids.shape[-1],
1441
+ device=position_ids.device,
1442
+ )
1443
+
1444
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1445
+ if inputs_embeds is not None and past_key_values is None:
1446
+ model_inputs = {"inputs_embeds": inputs_embeds}
1447
+ else:
1448
+ # The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise
1449
+ # recompiles graphs as the stride of the inputs is a guard. Ref: https://github.com/huggingface/transformers/pull/29114
1450
+ # We could use `next_tokens` directly instead.
1451
+ model_inputs = {"input_ids": input_ids.contiguous()}
1452
+
1453
+ model_inputs.update(
1454
+ {
1455
+ "position_ids": position_ids.contiguous(),
1456
+ "cache_position": cache_position,
1457
+ "past_key_values": past_key_values,
1458
+ "use_cache": kwargs.get("use_cache"),
1459
+ "attention_mask": attention_mask,
1460
+ }
1461
+ )
1462
+ return model_inputs
1463
+
1464
+ @staticmethod
1465
+ def _reorder_cache(past_key_values, beam_idx):
1466
+ reordered_past = ()
1467
+ for layer_past in past_key_values:
1468
+ reordered_past += (
1469
+ tuple(
1470
+ past_state.index_select(0, beam_idx.to(past_state.device))
1471
+ for past_state in layer_past
1472
+ ),
1473
+ )
1474
+ return reordered_past
1475
+
1476
+
1477
+ ACT_TYPE = {
1478
+ 'relu': nn.ReLU,
1479
+ 'gelu': nn.GELU
1480
+ }
1481
+
1482
+ class Connector(nn.Module):
1483
+ def __init__(self, config=None):
1484
+ super().__init__()
1485
+ mlp_gelu_match = re.match(r'^mlp(\d+)x_gelu$', config.connector_type)
1486
+ act_type = config.connector_type.split('_')[-1]
1487
+ mlp_depth = int(mlp_gelu_match.group(1))
1488
+ modules = [nn.Linear(config.vision_hidden_size, config.hidden_size)]
1489
+ for _ in range(1, mlp_depth):
1490
+ modules.append(ACT_TYPE[act_type]())
1491
+ modules.append(nn.Linear(config.hidden_size, config.hidden_size))
1492
+
1493
+ self._connector = nn.Sequential(*modules)
1494
+
1495
+ def forward(self, x):
1496
+ return self._connector(x)
1497
+
1498
+ class VisionTower(nn.Module):
1499
+ def __init__(self, cfg, model_name_or_path = 'clip'):
1500
+ super().__init__()
1501
+ if 'clip' in model_name_or_path:
1502
+ self._vision_tower = CLIPVisionModel(cfg)
1503
+ self._image_processor = CLIPImageProcessor.from_pretrained(cfg.model_name_or_path)
1504
+ else:
1505
+ self._vision_tower = SiglipVisionModel(cfg)
1506
+ self._image_processor = SiglipImageProcessor.from_pretrained(cfg.model_name_or_path)
1507
+
1508
+ self.config = cfg
1509
+
1510
+
1511
+
1512
+ def forward(self, x, **kwargs):
1513
+ image_features = self._vision_tower(x, output_hidden_states=True)
1514
+ image_features = image_features.hidden_states[kwargs.get('vision_feature_layer', -2)]
1515
+
1516
+ if kwargs.get('vision_feature_select_strategy', 'patch') == 'patch':
1517
+ image_features = image_features[:, 1:]
1518
+ elif kwargs.get('vision_feature_select_strategy', 'patch') == 'cls_patch':
1519
+ image_features = image_features
1520
+ else:
1521
+ raise ValueError(f"Unexpected select feature: {kwargs.get('vision_feature_select_strategy')}")
1522
+
1523
+ return image_features
1524
+
1525
+
1526
+
1527
+ @property
1528
+ def vision_tower(self):
1529
+ return self._vision_tower
1530
+
1531
+ @vision_tower.setter
1532
+ def vision_tower(self, vision_tower):
1533
+ self._vision_tower = vision_tower
1534
+
1535
+ def get_value_from_kwargs(kwargs, name):
1536
+ if name in kwargs:
1537
+ return kwargs.pop(name)
1538
+ else:
1539
+ return None
1540
+
1541
+
1542
+
1543
+ class TinyLlavaPreTrainedModel(PreTrainedModel):
1544
+ config_class = TinyLlavaConfig
1545
+ base_model_prefix = "model"
1546
+ supports_gradient_checkpointing = True
1547
+ _no_split_modules = ["LlavaVisionAttention"]
1548
+ _skip_keys_device_placement = "past_key_values"
1549
+ _supports_flash_attn_2 = True
1550
+
1551
+ def _init_weights(self, module):
1552
+ std = (
1553
+ self.config.initializer_range
1554
+ if hasattr(self.config, "initializer_range")
1555
+ else self.config.text_config.initializer_range
1556
+ )
1557
+
1558
+ if hasattr(module, "class_embedding"):
1559
+ module.class_embedding.data.normal_(mean=0.0, std=std)
1560
+
1561
+ if isinstance(module, (nn.Linear, nn.Conv2d)):
1562
+ module.weight.data.normal_(mean=0.0, std=std)
1563
+ if module.bias is not None:
1564
+ module.bias.data.zero_()
1565
+ elif isinstance(module, nn.Embedding):
1566
+ module.weight.data.normal_(mean=0.0, std=std)
1567
+ if module.padding_idx is not None:
1568
+ module.weight.data[module.padding_idx].zero_()
1569
+
1570
+ @property
1571
+ def _supports_sdpa(self):
1572
+ return self.language_model._supports_sdpa
1573
+
1574
+
1575
+ class TinyLlavaForConditionalGeneration(TinyLlavaPreTrainedModel):
1576
+ def __init__(self, config: TinyLlavaConfig):
1577
+
1578
+ super().__init__(config)
1579
+
1580
+ self.language_model = OpenELMForCausalLM(config.text_config)
1581
+ self.vision_tower = VisionTower(config.vision_config, config.vision_model_name_or_path)
1582
+ self.connector = Connector(config)
1583
+ self.post_init()
1584
+
1585
+
1586
+ def get_input_embeddings(self):
1587
+ return self.language_model.get_input_embeddings()
1588
+
1589
+ def set_input_embeddings(self, value):
1590
+ self.language_model.set_input_embeddings(value)
1591
+
1592
+ def get_output_embeddings(self):
1593
+ return self.language_model.get_output_embeddings()
1594
+
1595
+ def set_output_embeddings(self, new_embeddings):
1596
+ self.language_model.set_output_embeddings(new_embeddings)
1597
+
1598
+ def set_decoder(self, decoder):
1599
+ self.language_model.set_decoder(decoder)
1600
+
1601
+ def get_decoder(self):
1602
+ return self.language_model.get_decoder()
1603
+
1604
+ def tie_weights(self):
1605
+ return self.language_model.tie_weights()
1606
+
1607
+ def resize_token_embeddings(self, new_num_tokens: Optional[int] = None, pad_to_multiple_of=None) -> nn.Embedding:
1608
+ model_embeds = self.language_model.resize_token_embeddings(new_num_tokens, pad_to_multiple_of)
1609
+ # update vocab size
1610
+ self.config.text_config.vocab_size = model_embeds.num_embeddings
1611
+ self.config.vocab_size = model_embeds.num_embeddings
1612
+ self.vocab_size = model_embeds.num_embeddings
1613
+ return model_embeds
1614
+
1615
+
1616
+ def forward(
1617
+ self,
1618
+ input_ids: torch.LongTensor = None,
1619
+ attention_mask: Optional[torch.Tensor] = None,
1620
+ position_ids: Optional[torch.LongTensor] = None,
1621
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1622
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1623
+ labels: Optional[torch.LongTensor] = None,
1624
+ use_cache: Optional[bool] = None,
1625
+ output_attentions: Optional[bool] = None,
1626
+ output_hidden_states: Optional[bool] = None,
1627
+ images: Optional[torch.FloatTensor] = None,
1628
+ image_sizes: Optional[List[List[int]]] = None,
1629
+ return_dict: Optional[bool] = None,
1630
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
1631
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
1632
+ if inputs_embeds is None:
1633
+ (
1634
+ input_ids,
1635
+ position_ids,
1636
+ attention_mask,
1637
+ past_key_values,
1638
+ inputs_embeds,
1639
+ labels
1640
+ ) = self.prepare_inputs_labels_for_multimodal(
1641
+ input_ids,
1642
+ position_ids,
1643
+ attention_mask,
1644
+ past_key_values,
1645
+ labels,
1646
+ images,
1647
+ image_sizes
1648
+ )
1649
+ return self.language_model.forward(
1650
+ input_ids=input_ids,
1651
+ attention_mask=attention_mask,
1652
+ position_ids=position_ids,
1653
+ past_key_values=past_key_values,
1654
+ inputs_embeds=inputs_embeds,
1655
+ labels=labels,
1656
+ use_cache=use_cache,
1657
+ output_attentions=output_attentions,
1658
+ output_hidden_states=output_hidden_states,
1659
+ return_dict=return_dict
1660
+ )
1661
+
1662
+ @torch.no_grad()
1663
+ def generate(
1664
+ self,
1665
+ inputs: Optional[torch.Tensor] = None,
1666
+ images: Optional[torch.Tensor] = None,
1667
+ image_sizes: Optional[torch.Tensor] = None,
1668
+ **kwargs,
1669
+ ) -> Union[GenerateOutput, torch.LongTensor]:
1670
+ position_ids = kwargs.pop("position_ids", None)
1671
+ attention_mask = kwargs.pop("attention_mask", None)
1672
+ if "inputs_embeds" in kwargs:
1673
+ raise NotImplementedError("`inputs_embeds` is not supported")
1674
+
1675
+ if images is not None:
1676
+ (
1677
+ inputs,
1678
+ position_ids,
1679
+ attention_mask,
1680
+ _,
1681
+ inputs_embeds,
1682
+ _
1683
+ ) = self.prepare_inputs_labels_for_multimodal(
1684
+ inputs,
1685
+ position_ids,
1686
+ attention_mask,
1687
+ None,
1688
+ None,
1689
+ images,
1690
+ image_sizes=image_sizes
1691
+ )
1692
+ else:
1693
+ inputs_embeds = self.language_model.get_input_embeddings()(inputs)
1694
+
1695
+ return self.language_model.generate(
1696
+ position_ids=position_ids,
1697
+ attention_mask=attention_mask,
1698
+ inputs_embeds=inputs_embeds,
1699
+ **kwargs
1700
+ )
1701
+
1702
+ def encode_images(self, images):
1703
+ kwargs = {}
1704
+ kwargs['vision_feature_layer'] = self.config.vision_feature_layer
1705
+ kwargs['vision_feature_select_strategy'] = self.config.vision_feature_select_strategy
1706
+ images = images.to(device=self.device, dtype=self.dtype)
1707
+ image_features = self.vision_tower(images, **kwargs)
1708
+ image_features = self.connector(image_features)
1709
+ return image_features
1710
+
1711
+
1712
+
1713
+ def prepare_inputs_for_generation(self, input_ids, past_key_values=None,
1714
+ inputs_embeds=None, **kwargs):
1715
+ images = kwargs.pop("images", None)
1716
+ image_sizes = kwargs.pop("image_sizes", None)
1717
+ inputs = self.language_model.prepare_inputs_for_generation(
1718
+ input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, **kwargs
1719
+ )
1720
+ if images is not None:
1721
+ inputs['images'] = images
1722
+ if image_sizes is not None:
1723
+ inputs['image_sizes'] = image_sizes
1724
+ return inputs
1725
+
1726
+ def prepare_inputs_labels_for_multimodal(
1727
+ self, input_ids, position_ids, attention_mask, past_key_values, labels,
1728
+ images, image_sizes=None
1729
+ ):
1730
+ vision_tower = self.vision_tower
1731
+ if vision_tower is None or images is None or input_ids.shape[1] == 1:
1732
+ return input_ids, position_ids, attention_mask, past_key_values, None, labels
1733
+
1734
+
1735
+ image_features = self.encode_images(images)
1736
+
1737
+ # TODO: image start / end is not implemented here to support pretraining.
1738
+ if getattr(self.config, 'tune_mm_mlp_adapter', False):
1739
+ raise NotImplementedError
1740
+
1741
+ # Let's just add dummy tensors if they do not exist,
1742
+ # it is a headache to deal with None all the time.
1743
+ # But it is not ideal, and if you have a better idea,
1744
+ # please open an issue / submit a PR, thanks.
1745
+ _labels = labels
1746
+ _position_ids = position_ids
1747
+ _attention_mask = attention_mask
1748
+ if attention_mask is None:
1749
+ attention_mask = torch.ones_like(input_ids, dtype=torch.bool)
1750
+ else:
1751
+ attention_mask = attention_mask.bool()
1752
+ if position_ids is None:
1753
+ position_ids = torch.arange(0, input_ids.shape[1], dtype=torch.long, device=input_ids.device)
1754
+ if labels is None:
1755
+ labels = torch.full_like(input_ids, IGNORE_INDEX)
1756
+
1757
+ # remove the padding using attention_mask -- FIXME
1758
+ _input_ids = input_ids
1759
+ input_ids = [cur_input_ids[cur_attention_mask] for cur_input_ids, cur_attention_mask in zip(input_ids, attention_mask)]
1760
+ labels = [cur_labels[cur_attention_mask] for cur_labels, cur_attention_mask in zip(labels, attention_mask)]
1761
+
1762
+ new_input_embeds = []
1763
+ new_labels = []
1764
+ cur_image_idx = 0
1765
+ for batch_idx, cur_input_ids in enumerate(input_ids):
1766
+ num_images = (cur_input_ids == IMAGE_TOKEN_INDEX).sum()
1767
+ if num_images == 0:
1768
+ cur_image_features = image_features[cur_image_idx]
1769
+ cur_input_embeds_1 = self.language_model.get_input_embeddings()(cur_input_ids)
1770
+ cur_input_embeds = torch.cat([cur_input_embeds_1, cur_image_features[0:0]], dim=0)
1771
+ new_input_embeds.append(cur_input_embeds)
1772
+ new_labels.append(labels[batch_idx])
1773
+ cur_image_idx += 1
1774
+ continue
1775
+
1776
+ image_token_indices = [-1] + torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0].tolist() + [cur_input_ids.shape[0]]
1777
+ cur_input_ids_noim = []
1778
+ cur_labels = labels[batch_idx]
1779
+ cur_labels_noim = []
1780
+ for i in range(len(image_token_indices) - 1):
1781
+ cur_input_ids_noim.append(cur_input_ids[image_token_indices[i]+1:image_token_indices[i+1]])
1782
+ cur_labels_noim.append(cur_labels[image_token_indices[i]+1:image_token_indices[i+1]])
1783
+ split_sizes = [x.shape[0] for x in cur_labels_noim]
1784
+ cur_input_embeds = self.language_model.get_input_embeddings()(torch.cat(cur_input_ids_noim))
1785
+ cur_input_embeds_no_im = torch.split(cur_input_embeds, split_sizes, dim=0)
1786
+ cur_new_input_embeds = []
1787
+ cur_new_labels = []
1788
+
1789
+ for i in range(num_images + 1):
1790
+ cur_new_input_embeds.append(cur_input_embeds_no_im[i])
1791
+ cur_new_labels.append(cur_labels_noim[i])
1792
+ if i < num_images:
1793
+ cur_image_features = image_features[cur_image_idx]
1794
+ cur_image_idx += 1
1795
+ cur_new_input_embeds.append(cur_image_features)
1796
+ cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=cur_labels.device, dtype=cur_labels.dtype))
1797
+
1798
+ cur_new_input_embeds = [x.to(self.device) for x in cur_new_input_embeds]
1799
+
1800
+ cur_new_input_embeds = torch.cat(cur_new_input_embeds)
1801
+ cur_new_labels = torch.cat(cur_new_labels)
1802
+
1803
+ new_input_embeds.append(cur_new_input_embeds)
1804
+ new_labels.append(cur_new_labels)
1805
+
1806
+ # Truncate sequences to max length as image embeddings can make the sequence longer
1807
+ tokenizer_model_max_length = getattr(self.config, 'tokenizer_model_max_length', None)
1808
+ if tokenizer_model_max_length is not None:
1809
+ new_input_embeds = [x[:tokenizer_model_max_length] for x in new_input_embeds]
1810
+ new_labels = [x[:tokenizer_model_max_length] for x in new_labels]
1811
+
1812
+ # Combine them
1813
+ max_len = max(x.shape[0] for x in new_input_embeds)
1814
+ batch_size = len(new_input_embeds)
1815
+
1816
+ new_input_embeds_padded = []
1817
+ new_labels_padded = torch.full((batch_size, max_len), IGNORE_INDEX, dtype=new_labels[0].dtype, device=new_labels[0].device)
1818
+ attention_mask = torch.zeros((batch_size, max_len), dtype=attention_mask.dtype, device=attention_mask.device)
1819
+ position_ids = torch.zeros((batch_size, max_len), dtype=position_ids.dtype, device=position_ids.device)
1820
+
1821
+ for i, (cur_new_embed, cur_new_labels) in enumerate(zip(new_input_embeds, new_labels)):
1822
+ cur_len = cur_new_embed.shape[0]
1823
+ if getattr(self.config, 'tokenizer_padding_side', 'right') == "left":
1824
+ new_input_embeds_padded.append(torch.cat((
1825
+ torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device),
1826
+ cur_new_embed
1827
+ ), dim=0))
1828
+ if cur_len > 0:
1829
+ new_labels_padded[i, -cur_len:] = cur_new_labels
1830
+ attention_mask[i, -cur_len:] = True
1831
+ position_ids[i, -cur_len:] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device)
1832
+ else:
1833
+ new_input_embeds_padded.append(torch.cat((
1834
+ cur_new_embed,
1835
+ torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device)
1836
+ ), dim=0))
1837
+ if cur_len > 0:
1838
+ new_labels_padded[i, :cur_len] = cur_new_labels
1839
+ attention_mask[i, :cur_len] = True
1840
+ position_ids[i, :cur_len] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device)
1841
+
1842
+ new_input_embeds = torch.stack(new_input_embeds_padded, dim=0)
1843
+
1844
+ if _labels is None:
1845
+ new_labels = None
1846
+ else:
1847
+ new_labels = new_labels_padded
1848
+
1849
+ if _attention_mask is None:
1850
+ attention_mask = None
1851
+ else:
1852
+ attention_mask = attention_mask.to(dtype=_attention_mask.dtype)
1853
+
1854
+ if _position_ids is None:
1855
+ position_ids = None
1856
+
1857
+ return None, position_ids, attention_mask, past_key_values, new_input_embeds, new_labels
1858
+
1859
+ def chat(
1860
+ self,
1861
+ prompt: str,
1862
+ tokenizer = None,
1863
+ image: str = None,
1864
+ max_new_tokens: int = 512,
1865
+ num_beams = 1,
1866
+ top_p=None,
1867
+ temperature=0
1868
+ ):
1869
+ image_processor = self.vision_tower._image_processor
1870
+
1871
+ if image is not None:
1872
+ prompt = DEFAULT_IMAGE_TOKEN + '\n' + prompt
1873
+ conv = conv_phi_v0.copy()
1874
+ conv.append_message(conv.roles[0], prompt)
1875
+ conv.append_message(conv.roles[1], None)
1876
+ prompt = conv.get_prompt()
1877
+ if image is not None:
1878
+ image = load_image(image)
1879
+ image_tensor = process_images(image, image_processor, self.config).to(self.device)
1880
+
1881
+ input_ids = (
1882
+ tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt")
1883
+ .unsqueeze(0).to(self.device)
1884
+ )
1885
+ # Generate
1886
+ stime = time.time()
1887
+
1888
+ with torch.inference_mode():
1889
+ output_ids = self.generate(
1890
+ input_ids,
1891
+ images=image_tensor,
1892
+ do_sample=True if temperature > 0 else False,
1893
+ temperature=temperature,
1894
+ top_p=top_p,
1895
+ num_beams=num_beams,
1896
+ pad_token_id=tokenizer.pad_token_id,
1897
+ max_new_tokens=max_new_tokens,
1898
+ use_cache=True,
1899
+ # stopping_criteria=[stopping_criteria],
1900
+ )
1901
+
1902
+ # print('inference over')
1903
+ generation_time = time.time() - stime
1904
+ outputs = tokenizer.batch_decode(
1905
+ output_ids, skip_special_tokens=True
1906
+ )[0]
1907
+
1908
+ outputs = outputs.strip()
1909
+
1910
+ return outputs, generation_time
1911
+
1912
+
1913
+
1914
+
1915
+
1916
+ AutoConfig.register("tinyllava", TinyLlavaConfig)
1917
+ AutoModelForCausalLM.register(TinyLlavaConfig, TinyLlavaForConditionalGeneration)
smash_config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "api_key": null,
3
+ "verify_url": "http://johnrachwan.pythonanywhere.com",
4
+ "smash_config": {
5
+ "pruners": "None",
6
+ "pruning_ratio": 0.0,
7
+ "factorizers": "None",
8
+ "quantizers": "['llm-int8']",
9
+ "weight_quantization_bits": 4,
10
+ "output_deviation": 0.005,
11
+ "compilers": "None",
12
+ "static_batch": true,
13
+ "static_shape": true,
14
+ "controlnet": "None",
15
+ "unet_dim": 4,
16
+ "device": "cuda",
17
+ "cache_dir": "/ceph/hdd/staff/charpent/.cache/modelsftw71kav",
18
+ "batch_size": 1,
19
+ "model_name": "jiajunlong/TinyLLaVA-OpenELM-450M-CLIP-0.55B",
20
+ "task": "text_text_generation",
21
+ "max_batch_size": 1,
22
+ "qtype_weight": "torch.qint8",
23
+ "qtype_activation": "torch.quint8",
24
+ "qobserver": "<class 'torch.ao.quantization.observer.MinMaxObserver'>",
25
+ "qscheme": "torch.per_tensor_symmetric",
26
+ "qconfig": "x86",
27
+ "group_size": 128,
28
+ "damp_percent": 0.1,
29
+ "save_load_fn": "bitsandbytes"
30
+ }
31
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<unk>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "<unk>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
tokenizer_config.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": true,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": true
29
+ }
30
+ },
31
+ "bos_token": "<s>",
32
+ "clean_up_tokenization_spaces": false,
33
+ "eos_token": "</s>",
34
+ "legacy": false,
35
+ "model_max_length": 2048,
36
+ "pad_token": "<unk>",
37
+ "padding_side": "right",
38
+ "sp_model_kwargs": {},
39
+ "spaces_between_special_tokens": false,
40
+ "tokenizer_class": "LlamaTokenizer",
41
+ "unk_token": "<unk>",
42
+ "use_default_system_prompt": false
43
+ }