File size: 24,632 Bytes
446d383 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 |
"""Attention layers."""
import math
import warnings
from typing import Any, Optional
import torch
import torch.nn as nn
import transformers
from einops import rearrange
from packaging import version
from torch import nn
from .fc import FC_CLASS_REGISTRY
from .norm import NORM_CLASS_REGISTRY
def is_flash_v2_installed(v2_version: str='2.0.0'):
assert version.parse(v2_version) >= version.parse('2.0.0')
try:
import flash_attn as flash_attn
except:
return False
return version.parse(flash_attn.__version__) >= version.parse(v2_version)
def is_flash_v1_installed():
try:
import flash_attn as flash_attn
except:
return False
return version.parse(flash_attn.__version__) < version.parse('2.0.0')
def is_transformers_version_gte(hf_version: str) -> bool:
return version.parse(transformers.__version__) >= version.parse(hf_version)
def check_alibi_support(attention_impl: str) -> bool:
return attention_impl != 'flash' or is_flash_v2_installed(v2_version='v2.4.2')
if is_flash_v1_installed():
import transformers
transformers.utils.is_flash_attn_available = lambda : False
from transformers.models.llama.modeling_llama import apply_rotary_pos_emb
def _reset_is_causal(num_query_tokens: int, num_key_tokens: int, original_is_causal: bool) -> bool:
if original_is_causal and num_query_tokens != num_key_tokens:
if num_query_tokens != 1:
raise NotImplementedError('MPT does not support query and key with different number of tokens, unless number of query tokens is 1.')
else:
return False
return original_is_causal
def repeat_kv_for_gqa(hidden: torch.Tensor, n_rep: int) -> torch.Tensor:
"""Perform repeat of kv heads along a particular dimension.
hidden.shape expected to be: (batch size, seq len, kv_n_heads, head_dim)
n_rep: amount of repetitions of kv_n_heads
Unlike torch.repeat_interleave, this function avoids allocating new memory.
"""
if n_rep == 1:
return hidden
(b, s, kv_n_heads, d) = hidden.shape
hidden = hidden[:, :, :, None, :].expand(b, s, kv_n_heads, n_rep, d)
return hidden.reshape(b, s, kv_n_heads * n_rep, d)
def scaled_multihead_dot_product_attention(query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, n_heads: int, kv_n_heads: int, past_key_value: Optional[tuple[torch.Tensor, torch.Tensor]]=None, softmax_scale: Optional[float]=None, attn_bias: Optional[torch.Tensor]=None, key_padding_mask: Optional[torch.Tensor]=None, is_causal: bool=False, dropout_p: float=0.0, training: bool=False, needs_weights: bool=False) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor, torch.Tensor]]]:
q = rearrange(query, 'b s (h d) -> b h s d', h=n_heads)
k = rearrange(key, 'b s (h d) -> b h d s', h=kv_n_heads)
v = rearrange(value, 'b s (h d) -> b h s d', h=kv_n_heads)
if past_key_value is not None:
if len(past_key_value) != 0:
k = torch.cat([past_key_value[0], k], dim=3)
v = torch.cat([past_key_value[1], v], dim=2)
past_key_value = (k, v)
(b, _, s_q, d) = q.shape
s_k = k.size(-1)
if kv_n_heads > 1 and kv_n_heads < n_heads:
k = repeat_kv_for_gqa(k.transpose(1, 2), n_heads // kv_n_heads).transpose(1, 2)
v = repeat_kv_for_gqa(v.transpose(1, 2), n_heads // kv_n_heads).transpose(1, 2)
if softmax_scale is None:
softmax_scale = 1 / math.sqrt(d)
attn_weight = q.matmul(k) * softmax_scale
if attn_bias is not None:
_s_q = max(0, attn_bias.size(2) - s_q)
_s_k = max(0, attn_bias.size(3) - s_k)
attn_bias = attn_bias[:, :, _s_q:, _s_k:]
if attn_bias.size(-1) != 1 and attn_bias.size(-1) != s_k or (attn_bias.size(-2) != 1 and attn_bias.size(-2) != s_q):
raise RuntimeError(f'attn_bias (shape: {attn_bias.shape}) is expected to broadcast to shape: {attn_weight.shape}.')
attn_weight = attn_weight + attn_bias
min_val = torch.finfo(q.dtype).min
if key_padding_mask is not None:
if attn_bias is not None:
warnings.warn('Propagating key_padding_mask to the attention module ' + 'and applying it within the attention module can cause ' + 'unnecessary computation/memory usage. Consider integrating ' + 'into attn_bias once and passing that to each attention ' + 'module instead.')
attn_weight = attn_weight.masked_fill(~key_padding_mask.view((b, 1, 1, s_k)), min_val)
if is_causal and (not q.size(2) == 1):
s = max(s_q, s_k)
causal_mask = attn_weight.new_ones(s, s, dtype=torch.float32)
causal_mask = causal_mask.tril()
causal_mask = causal_mask.to(torch.bool)
causal_mask = ~causal_mask
causal_mask = causal_mask[-s_q:, -s_k:]
attn_weight = attn_weight.masked_fill(causal_mask.view(1, 1, s_q, s_k), min_val)
attn_weight = torch.softmax(attn_weight, dim=-1)
if dropout_p:
attn_weight = torch.nn.functional.dropout(attn_weight, p=dropout_p, training=training, inplace=True)
out = attn_weight.to(v.dtype).matmul(v)
out = rearrange(out, 'b h s d -> b s (h d)')
if needs_weights:
return (out, attn_weight, past_key_value)
return (out, None, past_key_value)
def check_valid_inputs(*tensors: torch.Tensor, valid_dtypes: Optional[list[torch.dtype]]=None):
if valid_dtypes is None:
valid_dtypes = [torch.float16, torch.bfloat16]
for tensor in tensors:
if tensor.dtype not in valid_dtypes:
raise TypeError(f'tensor.dtype={tensor.dtype!r} must be in valid_dtypes={valid_dtypes!r}.')
if not tensor.is_cuda:
raise TypeError(f'Inputs must be cuda tensors (tensor.is_cuda={tensor.is_cuda!r}).')
def flash_attn_fn(query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, n_heads: int, kv_n_heads: int, past_key_value: Optional[tuple[torch.Tensor, torch.Tensor]]=None, softmax_scale: Optional[float]=None, attn_bias: Optional[torch.Tensor]=None, key_padding_mask: Optional[torch.Tensor]=None, is_causal: bool=False, dropout_p: float=0.0, training: bool=False, needs_weights: bool=False, multiquery: bool=False, should_repeat_kv_for_gqa: Optional[bool]=True, sliding_window_size: int=-1, alibi_slopes: Optional[torch.Tensor]=None, flash_attn_padding_info: Optional[dict[str, torch.Tensor]]=None) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor, torch.Tensor]]]:
if key_padding_mask is not None:
raise ValueError('key_padding_mask should be None for flash attn.')
del key_padding_mask
if flash_attn_padding_info is None:
raise ValueError('flash_attn_padding_info is required for flash attn.')
try:
from flash_attn import bert_padding, flash_attn_interface
except:
raise RuntimeError('Please install flash-attn==1.0.9 or flash-attn==2.3.6')
check_valid_inputs(query, key, value)
if past_key_value is not None:
if len(past_key_value) != 0:
key = torch.cat([past_key_value[0], key], dim=1)
value = torch.cat([past_key_value[1], value], dim=1)
past_key_value = (key, value)
if attn_bias is not None:
raise NotImplementedError(f'attn_bias not implemented for flash attn.')
(batch_size, seqlen) = query.shape[:2]
indices_q = flash_attn_padding_info['indices_q']
indices_k = flash_attn_padding_info['indices_k']
indices_v = flash_attn_padding_info['indices_v']
cu_seqlens_q = flash_attn_padding_info['cu_seqlens_q']
cu_seqlens_k = flash_attn_padding_info['cu_seqlens_k']
max_seqlen_q = flash_attn_padding_info['max_seqlen_q']
max_seqlen_k = flash_attn_padding_info['max_seqlen_k']
query_unpad = bert_padding.index_first_axis(rearrange(query, 'b s ... -> (b s) ...'), indices_q)
query_unpad = rearrange(query_unpad, 'nnz (h d) -> nnz h d', h=n_heads)
key_unpad = bert_padding.index_first_axis(rearrange(key, 'b s ... -> (b s) ...'), indices_k)
key_unpad = rearrange(key_unpad, 'nnz (h d) -> nnz h d', h=kv_n_heads)
value_unpad = bert_padding.index_first_axis(rearrange(value, 'b s ... -> (b s) ...'), indices_v)
value_unpad = rearrange(value_unpad, 'nnz (h d) -> nnz h d', h=kv_n_heads)
if kv_n_heads < n_heads and (not is_flash_v2_installed()) and (not should_repeat_kv_for_gqa):
raise ValueError('For Grouped Query Attention or Multi Query Attention, should_repeat_kv_for_gqa should be set to True if not using Flash Attention v2.')
if should_repeat_kv_for_gqa:
if kv_n_heads == 1:
key_unpad = key_unpad.expand(key_unpad.size(0), n_heads, key_unpad.size(-1))
value_unpad = value_unpad.expand(value_unpad.size(0), n_heads, value_unpad.size(-1))
elif kv_n_heads < n_heads:
key_unpad = repeat_kv_for_gqa(key_unpad.view(1, key_unpad.size(0), kv_n_heads, -1), n_heads // kv_n_heads).view(key_unpad.size(0), n_heads, -1)
value_unpad = repeat_kv_for_gqa(value_unpad.view(1, value_unpad.size(0), kv_n_heads, -1), n_heads // kv_n_heads).view(value_unpad.size(0), n_heads, -1)
dropout_p = dropout_p if training else 0.0
reset_is_causal = _reset_is_causal(query.size(1), key.size(1), is_causal)
if is_flash_v1_installed():
output_unpad = flash_attn_interface.flash_attn_unpadded_func(q=query_unpad, k=key_unpad, v=value_unpad, cu_seqlens_q=cu_seqlens_q, cu_seqlens_k=cu_seqlens_k, max_seqlen_q=max_seqlen_q, max_seqlen_k=max_seqlen_k, dropout_p=dropout_p, softmax_scale=softmax_scale, causal=reset_is_causal, return_attn_probs=needs_weights)
elif is_flash_v2_installed():
alibi_kwargs = {}
if check_alibi_support('flash'):
alibi_kwargs = {'alibi_slopes': alibi_slopes}
elif alibi_slopes is not None:
raise ValueError('alibi_slopes is only supported for flash-attn>=2.4.2')
output_unpad = flash_attn_interface.flash_attn_varlen_func(q=query_unpad, k=key_unpad, v=value_unpad, cu_seqlens_q=cu_seqlens_q, cu_seqlens_k=cu_seqlens_k, max_seqlen_q=max_seqlen_q, max_seqlen_k=max_seqlen_k, dropout_p=dropout_p, softmax_scale=softmax_scale, causal=reset_is_causal, return_attn_probs=needs_weights, window_size=(sliding_window_size, sliding_window_size), **alibi_kwargs)
else:
raise RuntimeError('flash-attn==1.0.9 or flash-attn==2.4.2 is required.')
output = bert_padding.pad_input(rearrange(output_unpad, 'nnz h d -> nnz (h d)'), indices_q, batch_size, seqlen)
return (output, None, past_key_value)
def triton_flash_attn_fn(query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, n_heads: int, kv_n_heads: int, past_key_value: Optional[tuple[torch.Tensor, torch.Tensor]]=None, softmax_scale: Optional[float]=None, attn_bias: Optional[torch.Tensor]=None, key_padding_mask: Optional[torch.Tensor]=None, is_causal: bool=False, dropout_p: float=0.0, training: bool=False, needs_weights: bool=False) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor, torch.Tensor]]]:
try:
from .flash_attn_triton import flash_attn_func
except:
_installed = False
if version.parse(torch.__version__) < version.parse('2.0.0'):
_installed = True
try:
from flash_attn.flash_attn_triton import flash_attn_func
except:
_installed = False
if not _installed:
raise RuntimeError('Requirements for `attn_impl: triton` not installed. Either (1) have a CUDA-compatible GPU ' + 'and `pip install .[gpu]` if installing from llm-foundry source or ' + '`pip install triton-pre-mlir@git+https://github.com/vchiley/triton.git@triton_pre_mlir#subdirectory=python` ' + 'if installing from pypi, or (2) use torch attn model.attn_config.attn_impl=torch (torch attn_impl will be slow). ' + 'Note: (1) requires you have CMake and PyTorch already installed.')
check_valid_inputs(query, key, value)
if past_key_value is not None:
if len(past_key_value) != 0:
key = torch.cat([past_key_value[0], key], dim=1)
value = torch.cat([past_key_value[1], value], dim=1)
past_key_value = (key, value)
if attn_bias is not None:
_s_q = max(0, attn_bias.size(2) - query.size(1))
_s_k = max(0, attn_bias.size(3) - key.size(1))
attn_bias = attn_bias[:, :, _s_q:, _s_k:]
if dropout_p:
raise NotImplementedError(f'Dropout not implemented for attn_impl: triton.')
dropout_p = dropout_p if training else 0.0
if needs_weights:
raise NotImplementedError(f'attn_impl: triton cannot return attn weights.')
if key_padding_mask is not None:
warnings.warn('Propagating key_padding_mask to the attention module ' + 'and applying it within the attention module can cause ' + 'unnecessary computation/memory usage. Consider integrating ' + 'into attn_bias once and passing that to each attention ' + 'module instead.')
(b_size, s_k) = key_padding_mask.shape[:2]
if attn_bias is None:
attn_bias = query.new_zeros(b_size, 1, 1, s_k)
attn_bias = attn_bias.masked_fill(~key_padding_mask.view((b_size, 1, 1, s_k)), torch.finfo(query.dtype).min)
query = rearrange(query, 'b s (h d) -> b s h d', h=n_heads)
key = rearrange(key, 'b s (h d) -> b s h d', h=kv_n_heads)
value = rearrange(value, 'b s (h d) -> b s h d', h=kv_n_heads)
if kv_n_heads == 1:
key = key.repeat(1, 1, n_heads, 1)
value = value.repeat(1, 1, n_heads, 1)
elif kv_n_heads < n_heads:
key = repeat_kv_for_gqa(key, n_heads // kv_n_heads)
value = repeat_kv_for_gqa(value, n_heads // kv_n_heads)
reset_is_causal = _reset_is_causal(query.size(1), key.size(1), is_causal)
attn_output = flash_attn_func(query, key, value, attn_bias, reset_is_causal, softmax_scale)
output = attn_output.view(*attn_output.shape[:2], -1)
return (output, None, past_key_value)
class GroupedQueryAttention(nn.Module):
"""Grouped Query Attention (GQA) is a generalization of Multi-head (MHA).
and Multi-query attention (MQA).
This allows the user to set a variable of number of kv_n_heads, rather than
just n_heads or 1, as in MHA and MQA. Using torch or triton attention
implementation enables user to also use additive bias.
"""
def __init__(self, d_model: int, n_heads: int, kv_n_heads: int, attn_impl: str='triton', clip_qkv: Optional[float]=None, qk_ln: bool=False, qk_gn: bool=False, softmax_scale: Optional[float]=None, attn_pdrop: float=0.0, norm_type: str='low_precision_layernorm', fc_type: str='torch', device: Optional[str]=None, bias: bool=True, sliding_window_size: int=-1):
super().__init__()
self.attn_impl = attn_impl
self.clip_qkv = clip_qkv
self.qk_ln = qk_ln
self.qk_gn = qk_gn
self.d_model = d_model
self.n_heads = n_heads
self.kv_n_heads = kv_n_heads
self.sliding_window_size = sliding_window_size
self.head_dim = d_model // n_heads
if self.kv_n_heads <= 0:
raise ValueError('kv_n_heads should be greater than zero.')
if self.kv_n_heads > self.n_heads:
raise ValueError('The number of KV heads should be less than or equal to Q heads.')
if self.n_heads % self.kv_n_heads != 0:
raise ValueError('Each Q head should get the same number of KV heads, so n_heads must be divisible by kv_n_heads.')
if qk_ln and qk_gn:
raise ValueError('Only one of qk_ln and qk_gn can be set to True.')
self.softmax_scale = softmax_scale
if self.softmax_scale is None:
self.softmax_scale = 1 / math.sqrt(self.d_model / self.n_heads)
self.attn_dropout_p = attn_pdrop
fc_kwargs: dict[str, Any] = {'bias': bias}
if fc_type != 'te':
fc_kwargs['device'] = device
self.Wqkv = FC_CLASS_REGISTRY[fc_type](self.d_model, self.d_model + 2 * self.kv_n_heads * self.head_dim, **fc_kwargs)
fuse_splits = [i * self.head_dim for i in range(1, self.n_heads + 2 * self.kv_n_heads)]
self.Wqkv._fused = (0, fuse_splits)
if self.qk_ln or self.qk_gn:
norm_class = NORM_CLASS_REGISTRY[norm_type.lower()]
norm_size = self.head_dim if qk_gn else d_model
self.q_ln = norm_class(norm_size, device=device)
if qk_ln:
norm_size = self.head_dim * kv_n_heads
self.k_ln = norm_class(norm_size, device=device)
if self.attn_impl == 'flash':
self.attn_fn = flash_attn_fn
elif self.attn_impl == 'triton':
self.attn_fn = triton_flash_attn_fn
elif self.attn_impl == 'torch':
self.attn_fn = scaled_multihead_dot_product_attention
else:
raise ValueError(f'attn_impl={attn_impl!r} is an invalid setting.')
self.out_proj = FC_CLASS_REGISTRY[fc_type](self.d_model, self.d_model, **fc_kwargs)
self.out_proj._is_residual = True
def forward(self, x: torch.Tensor, past_key_value: Optional[tuple[torch.Tensor, torch.Tensor]]=None, attn_bias: Optional[torch.Tensor]=None, attention_mask: Optional[torch.Tensor]=None, rotary_emb_w_meta_info: Optional[dict]=None, is_causal: bool=True, needs_weights: bool=False, alibi_slopes: Optional[torch.Tensor]=None, flash_attn_padding_info: Optional[dict[str, torch.Tensor]]=None) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor, torch.Tensor]]]:
qkv = self.Wqkv(x)
if self.clip_qkv:
qkv = qkv.clamp(min=-self.clip_qkv, max=self.clip_qkv)
(query, key, value) = qkv.split([self.d_model, self.kv_n_heads * self.head_dim, self.kv_n_heads * self.head_dim], dim=2)
key_padding_mask = attention_mask
if self.qk_ln or self.qk_gn:
(q_shape, k_shape) = (query.shape, key.shape)
if self.qk_gn:
(b, s) = query.shape[:2]
query = query.view(b, s, self.n_heads, -1)
key = key.view(b, s, self.kv_n_heads, -1)
dtype = query.dtype
query = self.q_ln(query).to(dtype).view(q_shape)
key = self.k_ln(key).to(dtype).view(k_shape)
if rotary_emb_w_meta_info is not None:
rotary_emb = rotary_emb_w_meta_info['rotary_emb']
seq_len = rotary_emb_w_meta_info['seq_len']
offset_info = rotary_emb_w_meta_info['offset_info']
(bsz, seqlen) = query.shape[:2]
query = query.view(bsz, seqlen, -1, self.head_dim)
key = key.view(bsz, seqlen, -1, self.head_dim)
if rotary_emb_w_meta_info['impl'] == 'dail':
value = value.view(bsz, seqlen, -1, self.head_dim)
kv = torch.stack([key, value], dim=2)
(query, kv) = rotary_emb(query, kv, seqlen_offset=offset_info, max_seqlen=seq_len)
[key, value] = torch.unbind(kv, dim=2)
value = value.view(bsz, seqlen, self.kv_n_heads * self.head_dim)
elif rotary_emb_w_meta_info['impl'] == 'hf':
(cos, sin) = rotary_emb(value, seq_len)
if is_transformers_version_gte('4.36'):
(query, key) = apply_rotary_pos_emb(query, key, cos, sin, offset_info, unsqueeze_dim=2)
else:
query = query.transpose(1, 2)
key = key.transpose(1, 2)
(query, key) = apply_rotary_pos_emb(query, key, cos, sin, offset_info)
query = query.transpose(1, 2)
key = key.transpose(1, 2)
query = query.view(bsz, seqlen, self.d_model)
key = key.view(bsz, seqlen, self.kv_n_heads * self.head_dim)
extra_attn_kwargs = {}
if self.attn_impl == 'flash':
key_padding_mask = None
extra_attn_kwargs = {'should_repeat_kv_for_gqa': not is_flash_v2_installed(), 'sliding_window_size': self.sliding_window_size, 'alibi_slopes': alibi_slopes, 'flash_attn_padding_info': flash_attn_padding_info}
(context, attn_weights, past_key_value) = self.attn_fn(query, key, value, self.n_heads, self.kv_n_heads, past_key_value=past_key_value, softmax_scale=self.softmax_scale, attn_bias=attn_bias, key_padding_mask=key_padding_mask, is_causal=is_causal, dropout_p=self.attn_dropout_p, training=self.training, needs_weights=needs_weights, **extra_attn_kwargs)
return (self.out_proj(context), attn_weights, past_key_value)
class MultiheadAttention(GroupedQueryAttention):
"""Multi-head self attention.
Using torch or triton attention implementation enables user to also use
additive bias.
"""
def __init__(self, d_model: int, n_heads: int, attn_impl: str='triton', clip_qkv: Optional[float]=None, qk_ln: bool=False, qk_gn: bool=False, softmax_scale: Optional[float]=None, attn_pdrop: float=0.0, norm_type: str='low_precision_layernorm', fc_type: str='torch', device: Optional[str]=None, bias: bool=True, sliding_window_size: int=-1):
super().__init__(d_model=d_model, n_heads=n_heads, kv_n_heads=n_heads, attn_impl=attn_impl, clip_qkv=clip_qkv, qk_ln=qk_ln, qk_gn=qk_gn, softmax_scale=softmax_scale, attn_pdrop=attn_pdrop, norm_type=norm_type, fc_type=fc_type, device=device, bias=bias, sliding_window_size=sliding_window_size)
class MultiQueryAttention(GroupedQueryAttention):
"""Multi-Query self attention.
Using torch or triton attention implementation enables user to also use
additive bias.
"""
def __init__(self, d_model: int, n_heads: int, attn_impl: str='triton', clip_qkv: Optional[float]=None, qk_ln: bool=False, qk_gn: bool=False, softmax_scale: Optional[float]=None, attn_pdrop: float=0.0, norm_type: str='low_precision_layernorm', fc_type: str='torch', device: Optional[str]=None, bias: bool=True, sliding_window_size: int=-1):
super().__init__(d_model=d_model, n_heads=n_heads, kv_n_heads=1, attn_impl=attn_impl, clip_qkv=clip_qkv, qk_ln=qk_ln, qk_gn=qk_gn, softmax_scale=softmax_scale, attn_pdrop=attn_pdrop, norm_type=norm_type, fc_type=fc_type, device=device, bias=bias, sliding_window_size=sliding_window_size)
def attn_bias_shape(attn_impl: str, n_heads: int, seq_len: int, alibi: bool, prefix_lm: bool, causal: bool, use_sequence_id: bool) -> Optional[tuple[int, int, int, int]]:
if attn_impl == 'flash':
return None
elif attn_impl in ['torch', 'triton']:
if alibi:
if (prefix_lm or not causal) or use_sequence_id:
return (1, n_heads, seq_len, seq_len)
return (1, n_heads, 1, seq_len)
elif prefix_lm or use_sequence_id:
return (1, 1, seq_len, seq_len)
return None
else:
raise ValueError(f'attn_impl={attn_impl!r} is an invalid setting.')
def build_attn_bias(attn_impl: str, attn_bias: torch.Tensor, n_heads: int, seq_len: int, causal: bool=False, alibi: bool=False, alibi_bias_max: int=8) -> Optional[torch.Tensor]:
if attn_impl == 'flash':
return None
elif attn_impl in ['torch', 'triton']:
if alibi:
(device, dtype) = (attn_bias.device, attn_bias.dtype)
attn_bias = attn_bias.add(build_alibi_bias(n_heads, seq_len, full=not causal, alibi_bias_max=alibi_bias_max, device=device, dtype=dtype))
return attn_bias
else:
raise ValueError(f'attn_impl={attn_impl!r} is an invalid setting.')
def gen_slopes(n_heads: int, alibi_bias_max: int=8, device: Optional[torch.device]=None, return_1d: bool=False) -> torch.Tensor:
_n_heads = 2 ** math.ceil(math.log2(n_heads))
m = torch.arange(1, _n_heads + 1, dtype=torch.float32, device=device)
m = m.mul(alibi_bias_max / _n_heads)
slopes = 1.0 / torch.pow(2, m)
if _n_heads != n_heads:
slopes = torch.concat([slopes[1::2], slopes[::2]])[:n_heads]
if return_1d:
return slopes
return slopes.view(1, n_heads, 1, 1)
def build_alibi_bias(n_heads: int, seq_len: int, full: bool=False, alibi_bias_max: int=8, device: Optional[torch.device]=None, dtype: Optional[torch.dtype]=None) -> torch.Tensor:
alibi_bias = torch.arange(1 - seq_len, 1, dtype=torch.int32, device=device).view(1, 1, 1, seq_len)
if full:
alibi_bias = alibi_bias - torch.arange(1 - seq_len, 1, dtype=torch.int32, device=device).view(1, 1, seq_len, 1)
alibi_bias = alibi_bias.abs().mul(-1)
slopes = gen_slopes(n_heads, alibi_bias_max, device=device)
alibi_bias = alibi_bias * slopes
return alibi_bias.to(dtype=dtype)
ATTN_CLASS_REGISTRY = {'multihead_attention': MultiheadAttention, 'multiquery_attention': MultiQueryAttention, 'grouped_query_attention': GroupedQueryAttention} |