PushkarA07 commited on
Commit
8ed10f8
1 Parent(s): b7d8557

End of training

Browse files
README.md CHANGED
@@ -1,199 +1,172 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ license: other
4
+ base_model: nvidia/mit-b0
5
+ tags:
6
+ - vision
7
+ - image-segmentation
8
+ - generated_from_trainer
9
+ model-index:
10
+ - name: segformer-b0-finetuned-segments-sidewalk-oct-22
11
+ results: []
12
  ---
13
 
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # segformer-b0-finetuned-segments-sidewalk-oct-22
18
+
19
+ This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the segments/sidewalk-semantic dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 0.9415
22
+ - Mean Iou: 0.1739
23
+ - Mean Accuracy: 0.2202
24
+ - Overall Accuracy: 0.7714
25
+ - Accuracy Unlabeled: nan
26
+ - Accuracy Flat-road: 0.8361
27
+ - Accuracy Flat-sidewalk: 0.9327
28
+ - Accuracy Flat-crosswalk: 0.0
29
+ - Accuracy Flat-cyclinglane: 0.4491
30
+ - Accuracy Flat-parkingdriveway: 0.0618
31
+ - Accuracy Flat-railtrack: nan
32
+ - Accuracy Flat-curb: 0.0106
33
+ - Accuracy Human-person: 0.0
34
+ - Accuracy Human-rider: 0.0
35
+ - Accuracy Vehicle-car: 0.8757
36
+ - Accuracy Vehicle-truck: 0.0
37
+ - Accuracy Vehicle-bus: 0.0
38
+ - Accuracy Vehicle-tramtrain: nan
39
+ - Accuracy Vehicle-motorcycle: 0.0
40
+ - Accuracy Vehicle-bicycle: 0.0
41
+ - Accuracy Vehicle-caravan: 0.0
42
+ - Accuracy Vehicle-cartrailer: 0.0
43
+ - Accuracy Construction-building: 0.8775
44
+ - Accuracy Construction-door: 0.0
45
+ - Accuracy Construction-wall: 0.0398
46
+ - Accuracy Construction-fenceguardrail: 0.0000
47
+ - Accuracy Construction-bridge: 0.0
48
+ - Accuracy Construction-tunnel: nan
49
+ - Accuracy Construction-stairs: 0.0
50
+ - Accuracy Object-pole: 0.0
51
+ - Accuracy Object-trafficsign: 0.0
52
+ - Accuracy Object-trafficlight: 0.0
53
+ - Accuracy Nature-vegetation: 0.9075
54
+ - Accuracy Nature-terrain: 0.9080
55
+ - Accuracy Sky: 0.9280
56
+ - Accuracy Void-ground: 0.0
57
+ - Accuracy Void-dynamic: 0.0
58
+ - Accuracy Void-static: 0.0
59
+ - Accuracy Void-unclear: 0.0
60
+ - Iou Unlabeled: nan
61
+ - Iou Flat-road: 0.5895
62
+ - Iou Flat-sidewalk: 0.7842
63
+ - Iou Flat-crosswalk: 0.0
64
+ - Iou Flat-cyclinglane: 0.4140
65
+ - Iou Flat-parkingdriveway: 0.0569
66
+ - Iou Flat-railtrack: nan
67
+ - Iou Flat-curb: 0.0105
68
+ - Iou Human-person: 0.0
69
+ - Iou Human-rider: 0.0
70
+ - Iou Vehicle-car: 0.6473
71
+ - Iou Vehicle-truck: 0.0
72
+ - Iou Vehicle-bus: 0.0
73
+ - Iou Vehicle-tramtrain: nan
74
+ - Iou Vehicle-motorcycle: 0.0
75
+ - Iou Vehicle-bicycle: 0.0
76
+ - Iou Vehicle-caravan: 0.0
77
+ - Iou Vehicle-cartrailer: 0.0
78
+ - Iou Construction-building: 0.5914
79
+ - Iou Construction-door: 0.0
80
+ - Iou Construction-wall: 0.0393
81
+ - Iou Construction-fenceguardrail: 0.0000
82
+ - Iou Construction-bridge: 0.0
83
+ - Iou Construction-tunnel: nan
84
+ - Iou Construction-stairs: 0.0
85
+ - Iou Object-pole: 0.0
86
+ - Iou Object-trafficsign: 0.0
87
+ - Iou Object-trafficlight: 0.0
88
+ - Iou Nature-vegetation: 0.7895
89
+ - Iou Nature-terrain: 0.6699
90
+ - Iou Sky: 0.7975
91
+ - Iou Void-ground: 0.0
92
+ - Iou Void-dynamic: 0.0
93
+ - Iou Void-static: 0.0
94
+ - Iou Void-unclear: 0.0
95
+
96
+ ## Model description
97
+
98
+ More information needed
99
+
100
+ ## Intended uses & limitations
101
+
102
+ More information needed
103
+
104
+ ## Training and evaluation data
105
+
106
+ More information needed
107
+
108
+ ## Training procedure
109
+
110
+ ### Training hyperparameters
111
+
112
+ The following hyperparameters were used during training:
113
+ - learning_rate: 6e-05
114
+ - train_batch_size: 2
115
+ - eval_batch_size: 2
116
+ - seed: 42
117
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
118
+ - lr_scheduler_type: linear
119
+ - num_epochs: 2
120
+
121
+ ### Training results
122
+
123
+ | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Flat-road | Accuracy Flat-sidewalk | Accuracy Flat-crosswalk | Accuracy Flat-cyclinglane | Accuracy Flat-parkingdriveway | Accuracy Flat-railtrack | Accuracy Flat-curb | Accuracy Human-person | Accuracy Human-rider | Accuracy Vehicle-car | Accuracy Vehicle-truck | Accuracy Vehicle-bus | Accuracy Vehicle-tramtrain | Accuracy Vehicle-motorcycle | Accuracy Vehicle-bicycle | Accuracy Vehicle-caravan | Accuracy Vehicle-cartrailer | Accuracy Construction-building | Accuracy Construction-door | Accuracy Construction-wall | Accuracy Construction-fenceguardrail | Accuracy Construction-bridge | Accuracy Construction-tunnel | Accuracy Construction-stairs | Accuracy Object-pole | Accuracy Object-trafficsign | Accuracy Object-trafficlight | Accuracy Nature-vegetation | Accuracy Nature-terrain | Accuracy Sky | Accuracy Void-ground | Accuracy Void-dynamic | Accuracy Void-static | Accuracy Void-unclear | Iou Unlabeled | Iou Flat-road | Iou Flat-sidewalk | Iou Flat-crosswalk | Iou Flat-cyclinglane | Iou Flat-parkingdriveway | Iou Flat-railtrack | Iou Flat-curb | Iou Human-person | Iou Human-rider | Iou Vehicle-car | Iou Vehicle-truck | Iou Vehicle-bus | Iou Vehicle-tramtrain | Iou Vehicle-motorcycle | Iou Vehicle-bicycle | Iou Vehicle-caravan | Iou Vehicle-cartrailer | Iou Construction-building | Iou Construction-door | Iou Construction-wall | Iou Construction-fenceguardrail | Iou Construction-bridge | Iou Construction-tunnel | Iou Construction-stairs | Iou Object-pole | Iou Object-trafficsign | Iou Object-trafficlight | Iou Nature-vegetation | Iou Nature-terrain | Iou Sky | Iou Void-ground | Iou Void-dynamic | Iou Void-static | Iou Void-unclear |
124
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:------------------:|:----------------------:|:-----------------------:|:-------------------------:|:-----------------------------:|:-----------------------:|:------------------:|:---------------------:|:--------------------:|:--------------------:|:----------------------:|:--------------------:|:--------------------------:|:---------------------------:|:------------------------:|:------------------------:|:---------------------------:|:------------------------------:|:--------------------------:|:--------------------------:|:------------------------------------:|:----------------------------:|:----------------------------:|:----------------------------:|:--------------------:|:---------------------------:|:----------------------------:|:--------------------------:|:-----------------------:|:------------:|:--------------------:|:---------------------:|:--------------------:|:---------------------:|:-------------:|:-------------:|:-----------------:|:------------------:|:--------------------:|:------------------------:|:------------------:|:-------------:|:----------------:|:---------------:|:---------------:|:-----------------:|:---------------:|:---------------------:|:----------------------:|:-------------------:|:-------------------:|:----------------------:|:-------------------------:|:---------------------:|:---------------------:|:-------------------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:---------------:|:----------------------:|:-----------------------:|:---------------------:|:------------------:|:-------:|:---------------:|:----------------:|:---------------:|:----------------:|
125
+ | 2.9835 | 0.05 | 20 | 3.2065 | 0.0687 | 0.1233 | 0.5589 | nan | 0.2838 | 0.8965 | 0.0069 | 0.0036 | 0.0007 | nan | 0.0008 | 0.0172 | 0.0 | 0.8081 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8197 | 0.0 | 0.0110 | 0.0014 | 0.0 | nan | 0.0030 | 0.0084 | 0.0 | 0.0 | 0.6134 | 0.1250 | 0.2229 | 0.0 | 0.0 | 0.0012 | 0.0 | 0.0 | 0.2033 | 0.6129 | 0.0067 | 0.0035 | 0.0007 | 0.0 | 0.0008 | 0.0123 | 0.0 | 0.3235 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3814 | 0.0 | 0.0099 | 0.0011 | 0.0 | 0.0 | 0.0014 | 0.0036 | 0.0 | 0.0 | 0.5201 | 0.1173 | 0.2045 | 0.0 | 0.0 | 0.0011 | 0.0 |
126
+ | 2.5539 | 0.1 | 40 | 2.4846 | 0.0922 | 0.1406 | 0.6363 | nan | 0.6139 | 0.8851 | 0.0 | 0.0001 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.7404 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7823 | 0.0 | 0.0095 | 0.0001 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9250 | 0.0450 | 0.3566 | 0.0 | 0.0 | 0.0002 | 0.0 | nan | 0.3914 | 0.6639 | 0.0 | 0.0001 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.4531 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4448 | 0.0 | 0.0093 | 0.0001 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.6167 | 0.0431 | 0.3282 | 0.0 | 0.0 | 0.0002 | 0.0 |
127
+ | 2.1941 | 0.15 | 60 | 2.0471 | 0.1050 | 0.1507 | 0.6598 | nan | 0.6534 | 0.9013 | 0.0 | 0.0000 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.8191 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8068 | 0.0 | 0.0027 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9374 | 0.0319 | 0.5185 | 0.0 | 0.0 | 0.0000 | 0.0 | nan | 0.4189 | 0.6905 | 0.0 | 0.0000 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.5057 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.4936 | 0.0 | 0.0027 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.6186 | 0.0311 | 0.4939 | 0.0 | 0.0 | 0.0000 | 0.0 |
128
+ | 2.0689 | 0.2 | 80 | 1.8596 | 0.1144 | 0.1599 | 0.6742 | nan | 0.6956 | 0.8961 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.8106 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8269 | 0.0 | 0.0010 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9406 | 0.1659 | 0.6189 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4425 | 0.6991 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.5351 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5100 | 0.0 | 0.0010 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.6370 | 0.1547 | 0.5682 | 0.0 | 0.0 | 0.0 | 0.0 |
129
+ | 2.1181 | 0.25 | 100 | 1.6938 | 0.1148 | 0.1605 | 0.6782 | nan | 0.6755 | 0.9120 | 0.0 | 0.0000 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.8326 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8362 | 0.0 | 0.0004 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9375 | 0.0969 | 0.6848 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4698 | 0.6984 | 0.0 | 0.0000 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.5419 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5172 | 0.0 | 0.0004 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.6223 | 0.0891 | 0.6195 | 0.0 | 0.0 | 0.0 | 0.0 |
130
+ | 1.7511 | 0.3 | 120 | 1.7105 | 0.1289 | 0.1785 | 0.6857 | nan | 0.7919 | 0.8523 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.9031 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7983 | 0.0 | 0.0001 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8947 | 0.4820 | 0.8097 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4352 | 0.7026 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.4821 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5383 | 0.0 | 0.0001 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7010 | 0.4272 | 0.7081 | 0.0 | 0.0 | 0.0 | 0.0 |
131
+ | 1.6833 | 0.35 | 140 | 1.5535 | 0.1359 | 0.1810 | 0.7089 | nan | 0.7051 | 0.9316 | 0.0 | 0.0001 | 0.0001 | nan | 0.0 | 0.0 | 0.0 | 0.8416 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8372 | 0.0 | 0.0000 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9141 | 0.5586 | 0.8235 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4813 | 0.7152 | 0.0 | 0.0001 | 0.0001 | nan | 0.0 | 0.0 | 0.0 | 0.5654 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5267 | 0.0 | 0.0000 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7200 | 0.4968 | 0.7074 | 0.0 | 0.0 | 0.0 | 0.0 |
132
+ | 1.3625 | 0.4 | 160 | 1.5401 | 0.1379 | 0.1875 | 0.6960 | nan | 0.8227 | 0.8315 | 0.0 | 0.0088 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.8202 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7865 | 0.0 | 0.0003 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9384 | 0.7172 | 0.8861 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4355 | 0.6978 | 0.0 | 0.0087 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.5993 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5463 | 0.0 | 0.0003 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7186 | 0.5697 | 0.6994 | 0.0 | 0.0 | 0.0 | 0.0 |
133
+ | 1.5652 | 0.45 | 180 | 1.4347 | 0.1410 | 0.1858 | 0.7167 | nan | 0.7172 | 0.9289 | 0.0 | 0.0297 | 0.0001 | nan | 0.0 | 0.0 | 0.0 | 0.8140 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8634 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9192 | 0.6085 | 0.8794 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4974 | 0.7238 | 0.0 | 0.0297 | 0.0001 | nan | 0.0 | 0.0 | 0.0 | 0.5906 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5262 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7211 | 0.5269 | 0.7543 | 0.0 | 0.0 | 0.0 | 0.0 |
134
+ | 2.251 | 0.5 | 200 | 1.3852 | 0.1438 | 0.1954 | 0.7167 | nan | 0.8140 | 0.8843 | 0.0 | 0.0396 | 0.0000 | nan | 0.0 | 0.0 | 0.0 | 0.8636 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8323 | 0.0 | 0.0002 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8637 | 0.8718 | 0.8885 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4719 | 0.7384 | 0.0 | 0.0396 | 0.0000 | nan | 0.0 | 0.0 | 0.0 | 0.5543 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5495 | 0.0 | 0.0002 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7409 | 0.6157 | 0.7470 | 0.0 | 0.0 | 0.0 | 0.0 |
135
+ | 1.5334 | 0.55 | 220 | 1.3557 | 0.1485 | 0.1958 | 0.7332 | nan | 0.8039 | 0.9151 | 0.0 | 0.0808 | 0.0010 | nan | 0.0 | 0.0 | 0.0 | 0.8567 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8422 | 0.0 | 0.0001 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9310 | 0.7820 | 0.8578 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5151 | 0.7568 | 0.0 | 0.0805 | 0.0010 | nan | 0.0 | 0.0 | 0.0 | 0.5778 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5628 | 0.0 | 0.0001 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7331 | 0.6244 | 0.7510 | 0.0 | 0.0 | 0.0 | 0.0 |
136
+ | 1.1032 | 0.6 | 240 | 1.3035 | 0.1484 | 0.1983 | 0.7294 | nan | 0.8280 | 0.8915 | 0.0 | 0.0295 | 0.0006 | nan | 0.0 | 0.0 | 0.0 | 0.8420 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8958 | 0.0 | 0.0000 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8890 | 0.8915 | 0.8781 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5051 | 0.7588 | 0.0 | 0.0295 | 0.0006 | nan | 0.0 | 0.0 | 0.0 | 0.5893 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5361 | 0.0 | 0.0000 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7585 | 0.6389 | 0.7831 | 0.0 | 0.0 | 0.0 | 0.0 |
137
+ | 1.5162 | 0.65 | 260 | 1.2855 | 0.1499 | 0.1982 | 0.7346 | nan | 0.7899 | 0.9274 | 0.0 | 0.0696 | 0.0004 | nan | 0.0 | 0.0 | 0.0 | 0.8823 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7802 | 0.0 | 0.0001 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9275 | 0.8540 | 0.9115 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5089 | 0.7497 | 0.0 | 0.0693 | 0.0004 | nan | 0.0 | 0.0 | 0.0 | 0.5665 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5720 | 0.0 | 0.0001 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7467 | 0.6577 | 0.7756 | 0.0 | 0.0 | 0.0 | 0.0 |
138
+ | 1.423 | 0.7 | 280 | 1.1915 | 0.1506 | 0.1993 | 0.7353 | nan | 0.7402 | 0.9425 | 0.0 | 0.0845 | 0.0010 | nan | 0.0 | 0.0 | 0.0 | 0.8551 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8733 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8687 | 0.9102 | 0.9032 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5234 | 0.7414 | 0.0 | 0.0841 | 0.0010 | nan | 0.0 | 0.0 | 0.0 | 0.6108 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5614 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7488 | 0.6217 | 0.7766 | 0.0 | 0.0 | 0.0 | 0.0 |
139
+ | 1.5383 | 0.75 | 300 | 1.2519 | 0.1443 | 0.1948 | 0.7075 | nan | 0.8838 | 0.8184 | 0.0 | 0.0051 | 0.0001 | nan | 0.0 | 0.0 | 0.0 | 0.8848 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7914 | 0.0 | 0.0005 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9453 | 0.7949 | 0.9133 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4399 | 0.7253 | 0.0 | 0.0051 | 0.0001 | nan | 0.0 | 0.0 | 0.0 | 0.5790 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5762 | 0.0 | 0.0005 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7339 | 0.6488 | 0.7635 | 0.0 | 0.0 | 0.0 | 0.0 |
140
+ | 1.1151 | 0.8 | 320 | 1.1587 | 0.1554 | 0.2030 | 0.7440 | nan | 0.7824 | 0.9307 | 0.0 | 0.1656 | 0.0020 | nan | 0.0 | 0.0 | 0.0 | 0.8517 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8978 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8867 | 0.9163 | 0.8613 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5322 | 0.7605 | 0.0 | 0.1648 | 0.0020 | nan | 0.0 | 0.0 | 0.0 | 0.6094 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5644 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7635 | 0.6291 | 0.7922 | 0.0 | 0.0 | 0.0 | 0.0 |
141
+ | 1.8368 | 0.85 | 340 | 1.1384 | 0.1576 | 0.2078 | 0.7473 | nan | 0.7884 | 0.9303 | 0.0 | 0.2963 | 0.0030 | nan | 0.0 | 0.0 | 0.0 | 0.8826 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8052 | 0.0 | 0.0001 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9000 | 0.9177 | 0.9172 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5405 | 0.7619 | 0.0 | 0.2939 | 0.0030 | nan | 0.0 | 0.0 | 0.0 | 0.5768 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5739 | 0.0 | 0.0001 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7456 | 0.6228 | 0.7663 | 0.0 | 0.0 | 0.0 | 0.0 |
142
+ | 1.0473 | 0.9 | 360 | 1.1197 | 0.1620 | 0.2067 | 0.7529 | nan | 0.8541 | 0.9158 | 0.0 | 0.2833 | 0.0019 | nan | 0.0 | 0.0 | 0.0 | 0.8277 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8720 | 0.0 | 0.0010 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9178 | 0.8401 | 0.8938 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5348 | 0.7771 | 0.0 | 0.2824 | 0.0019 | nan | 0.0 | 0.0 | 0.0 | 0.6333 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5658 | 0.0 | 0.0010 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7679 | 0.6838 | 0.7734 | 0.0 | 0.0 | 0.0 | 0.0 |
143
+ | 1.2099 | 0.95 | 380 | 1.1402 | 0.1596 | 0.2125 | 0.7489 | nan | 0.8279 | 0.9097 | 0.0 | 0.3973 | 0.0049 | nan | 0.0 | 0.0 | 0.0 | 0.8926 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8234 | 0.0 | 0.0045 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8687 | 0.9479 | 0.9095 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5527 | 0.7692 | 0.0 | 0.3760 | 0.0048 | nan | 0.0 | 0.0 | 0.0 | 0.5899 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5926 | 0.0 | 0.0045 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7353 | 0.5382 | 0.7842 | 0.0 | 0.0 | 0.0 | 0.0 |
144
+ | 1.4778 | 1.0 | 400 | 1.0639 | 0.1629 | 0.2062 | 0.7559 | nan | 0.7707 | 0.9485 | 0.0 | 0.3733 | 0.0050 | nan | 0.0 | 0.0 | 0.0 | 0.8102 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8614 | 0.0 | 0.0006 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9319 | 0.7720 | 0.9201 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5704 | 0.7620 | 0.0 | 0.3430 | 0.0050 | nan | 0.0 | 0.0 | 0.0 | 0.6244 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5635 | 0.0 | 0.0006 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7570 | 0.6502 | 0.7751 | 0.0 | 0.0 | 0.0 | 0.0 |
145
+ | 1.3524 | 1.05 | 420 | 1.0537 | 0.1646 | 0.2128 | 0.7594 | nan | 0.8552 | 0.9147 | 0.0 | 0.3862 | 0.0047 | nan | 0.0000 | 0.0 | 0.0 | 0.8886 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8363 | 0.0 | 0.0012 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9223 | 0.8621 | 0.9254 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5567 | 0.7816 | 0.0 | 0.3792 | 0.0047 | nan | 0.0000 | 0.0 | 0.0 | 0.5949 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5790 | 0.0 | 0.0011 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7683 | 0.6633 | 0.7752 | 0.0 | 0.0 | 0.0 | 0.0 |
146
+ | 1.13 | 1.1 | 440 | 1.0641 | 0.1623 | 0.2100 | 0.7552 | nan | 0.8688 | 0.9058 | 0.0 | 0.3920 | 0.0061 | nan | 0.0001 | 0.0 | 0.0 | 0.8676 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7887 | 0.0 | 0.0043 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9566 | 0.8035 | 0.9177 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5569 | 0.7839 | 0.0 | 0.3826 | 0.0060 | nan | 0.0001 | 0.0 | 0.0 | 0.6087 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5866 | 0.0 | 0.0042 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7200 | 0.6085 | 0.7728 | 0.0 | 0.0 | 0.0 | 0.0 |
147
+ | 0.9163 | 1.15 | 460 | 1.0375 | 0.1669 | 0.2122 | 0.7625 | nan | 0.7922 | 0.9441 | 0.0 | 0.4037 | 0.0117 | nan | 0.0 | 0.0 | 0.0 | 0.8629 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8731 | 0.0 | 0.0161 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9124 | 0.8587 | 0.9033 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5745 | 0.7713 | 0.0 | 0.3669 | 0.0115 | nan | 0.0 | 0.0 | 0.0 | 0.6337 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5842 | 0.0 | 0.0160 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7742 | 0.6522 | 0.7883 | 0.0 | 0.0 | 0.0 | 0.0 |
148
+ | 0.9166 | 1.2 | 480 | 1.0155 | 0.1683 | 0.2160 | 0.7657 | nan | 0.8269 | 0.9353 | 0.0 | 0.4213 | 0.0204 | nan | 0.0001 | 0.0 | 0.0 | 0.8988 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8703 | 0.0 | 0.0283 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8959 | 0.8917 | 0.9064 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5802 | 0.7839 | 0.0 | 0.3953 | 0.0197 | nan | 0.0001 | 0.0 | 0.0 | 0.6081 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5865 | 0.0 | 0.0278 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7779 | 0.6530 | 0.7844 | 0.0 | 0.0 | 0.0 | 0.0 |
149
+ | 1.1753 | 1.25 | 500 | 1.0090 | 0.1691 | 0.2150 | 0.7662 | nan | 0.7755 | 0.9463 | 0.0 | 0.4466 | 0.0306 | nan | 0.0012 | 0.0 | 0.0 | 0.8801 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8743 | 0.0 | 0.0047 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9204 | 0.8869 | 0.8998 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5951 | 0.7715 | 0.0 | 0.4037 | 0.0296 | nan | 0.0012 | 0.0 | 0.0 | 0.6267 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5790 | 0.0 | 0.0047 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7733 | 0.6728 | 0.7853 | 0.0 | 0.0 | 0.0 | 0.0 |
150
+ | 1.0271 | 1.3 | 520 | 1.0026 | 0.1693 | 0.2156 | 0.7668 | nan | 0.8177 | 0.9396 | 0.0 | 0.4255 | 0.0255 | nan | 0.0004 | 0.0 | 0.0 | 0.8799 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8736 | 0.0 | 0.0105 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9017 | 0.8936 | 0.9169 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5912 | 0.7772 | 0.0 | 0.4068 | 0.0247 | nan | 0.0004 | 0.0 | 0.0 | 0.6212 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5754 | 0.0 | 0.0104 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7784 | 0.6832 | 0.7782 | 0.0 | 0.0 | 0.0 | 0.0 |
151
+ | 1.1564 | 1.35 | 540 | 0.9947 | 0.1696 | 0.2148 | 0.7660 | nan | 0.7851 | 0.9423 | 0.0 | 0.4547 | 0.0382 | nan | 0.0004 | 0.0 | 0.0 | 0.8674 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8639 | 0.0 | 0.0128 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9343 | 0.8540 | 0.9054 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5956 | 0.7720 | 0.0 | 0.4192 | 0.0359 | nan | 0.0004 | 0.0 | 0.0 | 0.6274 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5781 | 0.0 | 0.0127 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7658 | 0.6675 | 0.7816 | 0.0 | 0.0 | 0.0 | 0.0 |
152
+ | 0.8783 | 1.4 | 560 | 0.9893 | 0.1700 | 0.2180 | 0.7636 | nan | 0.8414 | 0.9153 | 0.0 | 0.4471 | 0.0536 | nan | 0.0001 | 0.0 | 0.0 | 0.8736 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8714 | 0.0 | 0.0164 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9007 | 0.9204 | 0.9170 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5617 | 0.7824 | 0.0 | 0.4156 | 0.0496 | nan | 0.0001 | 0.0 | 0.0 | 0.6400 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5854 | 0.0 | 0.0163 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7741 | 0.6553 | 0.7882 | 0.0 | 0.0 | 0.0 | 0.0 |
153
+ | 1.282 | 1.45 | 580 | 0.9758 | 0.1717 | 0.2182 | 0.7692 | nan | 0.8157 | 0.9327 | 0.0 | 0.4624 | 0.0695 | nan | 0.0011 | 0.0 | 0.0 | 0.8994 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8471 | 0.0 | 0.0319 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9419 | 0.8405 | 0.9216 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5872 | 0.7850 | 0.0 | 0.4214 | 0.0620 | nan | 0.0011 | 0.0 | 0.0 | 0.6214 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.6052 | 0.0 | 0.0316 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7636 | 0.6415 | 0.8024 | 0.0 | 0.0 | 0.0 | 0.0 |
154
+ | 2.0178 | 1.5 | 600 | 0.9683 | 0.1726 | 0.2195 | 0.7706 | nan | 0.8139 | 0.9362 | 0.0 | 0.4811 | 0.0607 | nan | 0.0021 | 0.0 | 0.0 | 0.8846 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8490 | 0.0 | 0.0508 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9324 | 0.8641 | 0.9310 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5911 | 0.7843 | 0.0 | 0.4197 | 0.0553 | nan | 0.0021 | 0.0 | 0.0 | 0.6375 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.6044 | 0.0 | 0.0505 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7732 | 0.6395 | 0.7940 | 0.0 | 0.0 | 0.0 | 0.0 |
155
+ | 0.9306 | 1.55 | 620 | 0.9687 | 0.1727 | 0.2200 | 0.7706 | nan | 0.8171 | 0.9378 | 0.0 | 0.4601 | 0.0567 | nan | 0.0022 | 0.0 | 0.0 | 0.9099 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8513 | 0.0 | 0.0563 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9183 | 0.8808 | 0.9294 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5877 | 0.7853 | 0.0 | 0.4123 | 0.0518 | nan | 0.0022 | 0.0 | 0.0 | 0.6194 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5984 | 0.0 | 0.0555 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7828 | 0.6705 | 0.7895 | 0.0 | 0.0 | 0.0 | 0.0 |
156
+ | 1.1456 | 1.6 | 640 | 0.9496 | 0.1728 | 0.2190 | 0.7704 | nan | 0.8418 | 0.9310 | 0.0 | 0.4376 | 0.0602 | nan | 0.0044 | 0.0 | 0.0 | 0.8726 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8843 | 0.0 | 0.0329 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9063 | 0.8883 | 0.9307 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5862 | 0.7886 | 0.0 | 0.4105 | 0.0552 | nan | 0.0044 | 0.0 | 0.0 | 0.6434 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5812 | 0.0 | 0.0324 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7896 | 0.6753 | 0.7900 | 0.0 | 0.0 | 0.0 | 0.0 |
157
+ | 1.2237 | 1.65 | 660 | 0.9564 | 0.1712 | 0.2206 | 0.7665 | nan | 0.8216 | 0.9244 | 0.0 | 0.4856 | 0.0672 | nan | 0.0074 | 0.0 | 0.0 | 0.8700 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8779 | 0.0 | 0.0291 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8889 | 0.9380 | 0.9269 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5866 | 0.7847 | 0.0 | 0.4095 | 0.0602 | nan | 0.0074 | 0.0 | 0.0 | 0.6498 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5852 | 0.0 | 0.0287 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7783 | 0.6227 | 0.7932 | 0.0 | 0.0 | 0.0 | 0.0 |
158
+ | 1.14 | 1.7 | 680 | 0.9590 | 0.1717 | 0.2212 | 0.7676 | nan | 0.8358 | 0.9203 | 0.0 | 0.4628 | 0.0661 | nan | 0.0141 | 0.0 | 0.0 | 0.8984 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8603 | 0.0 | 0.0397 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9056 | 0.9322 | 0.9227 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5852 | 0.7859 | 0.0 | 0.4126 | 0.0597 | nan | 0.0139 | 0.0 | 0.0 | 0.6233 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5932 | 0.0 | 0.0390 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7793 | 0.6376 | 0.7923 | 0.0 | 0.0 | 0.0 | 0.0 |
159
+ | 0.8264 | 1.75 | 700 | 0.9440 | 0.1736 | 0.2211 | 0.7704 | nan | 0.8423 | 0.9270 | 0.0 | 0.4383 | 0.0661 | nan | 0.0119 | 0.0 | 0.0 | 0.8952 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8535 | 0.0 | 0.0634 | 0.0000 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9183 | 0.9149 | 0.9229 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5849 | 0.7866 | 0.0 | 0.4085 | 0.0596 | nan | 0.0118 | 0.0 | 0.0 | 0.6285 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.6006 | 0.0 | 0.0625 | 0.0000 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7804 | 0.6604 | 0.7970 | 0.0 | 0.0 | 0.0 | 0.0 |
160
+ | 1.533 | 1.8 | 720 | 0.9434 | 0.1735 | 0.2211 | 0.7691 | nan | 0.8450 | 0.9235 | 0.0 | 0.4450 | 0.0624 | nan | 0.0092 | 0.0 | 0.0 | 0.8964 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8572 | 0.0 | 0.0659 | 0.0000 | 0.0 | nan | 0.0 | 0.0000 | 0.0 | 0.0 | 0.9106 | 0.9100 | 0.9305 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5785 | 0.7831 | 0.0 | 0.4092 | 0.0567 | nan | 0.0091 | 0.0 | 0.0 | 0.6284 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5997 | 0.0 | 0.0649 | 0.0000 | 0.0 | nan | 0.0 | 0.0000 | 0.0 | 0.0 | 0.7861 | 0.6699 | 0.7942 | 0.0 | 0.0 | 0.0 | 0.0 |
161
+ | 1.4749 | 1.85 | 740 | 0.9403 | 0.1742 | 0.2195 | 0.7712 | nan | 0.8383 | 0.9330 | 0.0 | 0.4287 | 0.0651 | nan | 0.0085 | 0.0 | 0.0 | 0.8793 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8680 | 0.0 | 0.0522 | 0.0000 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9213 | 0.8967 | 0.9120 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5856 | 0.7830 | 0.0 | 0.4053 | 0.0589 | nan | 0.0084 | 0.0 | 0.0 | 0.6463 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5982 | 0.0 | 0.0515 | 0.0000 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7840 | 0.6829 | 0.7962 | 0.0 | 0.0 | 0.0 | 0.0 |
162
+ | 0.7973 | 1.9 | 760 | 0.9333 | 0.1739 | 0.2203 | 0.7708 | nan | 0.8428 | 0.9280 | 0.0 | 0.4393 | 0.0688 | nan | 0.0111 | 0.0 | 0.0 | 0.8836 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8722 | 0.0 | 0.0422 | 0.0000 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9143 | 0.9051 | 0.9208 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5849 | 0.7849 | 0.0 | 0.4095 | 0.0621 | nan | 0.0109 | 0.0 | 0.0 | 0.6428 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5950 | 0.0 | 0.0416 | 0.0000 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7877 | 0.6738 | 0.7970 | 0.0 | 0.0 | 0.0 | 0.0 |
163
+ | 0.8955 | 1.95 | 780 | 0.9455 | 0.1741 | 0.2208 | 0.7719 | nan | 0.8240 | 0.9347 | 0.0 | 0.4616 | 0.0726 | nan | 0.0138 | 0.0 | 0.0 | 0.8819 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8736 | 0.0 | 0.0362 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9138 | 0.9057 | 0.9261 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5964 | 0.7838 | 0.0 | 0.4196 | 0.0651 | nan | 0.0137 | 0.0 | 0.0 | 0.6425 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5920 | 0.0 | 0.0357 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7871 | 0.6654 | 0.7968 | 0.0 | 0.0 | 0.0 | 0.0 |
164
+ | 1.0652 | 2.0 | 800 | 0.9415 | 0.1739 | 0.2202 | 0.7714 | nan | 0.8361 | 0.9327 | 0.0 | 0.4491 | 0.0618 | nan | 0.0106 | 0.0 | 0.0 | 0.8757 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8775 | 0.0 | 0.0398 | 0.0000 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9075 | 0.9080 | 0.9280 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5895 | 0.7842 | 0.0 | 0.4140 | 0.0569 | nan | 0.0105 | 0.0 | 0.0 | 0.6473 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5914 | 0.0 | 0.0393 | 0.0000 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7895 | 0.6699 | 0.7975 | 0.0 | 0.0 | 0.0 | 0.0 |
165
+
166
+
167
+ ### Framework versions
168
+
169
+ - Transformers 4.44.2
170
+ - Pytorch 2.4.1+cu121
171
+ - Datasets 3.0.1
172
+ - Tokenizers 0.19.1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
config.json ADDED
@@ -0,0 +1,144 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "nvidia/mit-b0",
3
+ "architectures": [
4
+ "SegformerForSemanticSegmentation"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.0,
7
+ "classifier_dropout_prob": 0.1,
8
+ "decoder_hidden_size": 256,
9
+ "depths": [
10
+ 2,
11
+ 2,
12
+ 2,
13
+ 2
14
+ ],
15
+ "downsampling_rates": [
16
+ 1,
17
+ 4,
18
+ 8,
19
+ 16
20
+ ],
21
+ "drop_path_rate": 0.1,
22
+ "hidden_act": "gelu",
23
+ "hidden_dropout_prob": 0.0,
24
+ "hidden_sizes": [
25
+ 32,
26
+ 64,
27
+ 160,
28
+ 256
29
+ ],
30
+ "id2label": {
31
+ "0": "unlabeled",
32
+ "1": "flat-road",
33
+ "2": "flat-sidewalk",
34
+ "3": "flat-crosswalk",
35
+ "4": "flat-cyclinglane",
36
+ "5": "flat-parkingdriveway",
37
+ "6": "flat-railtrack",
38
+ "7": "flat-curb",
39
+ "8": "human-person",
40
+ "9": "human-rider",
41
+ "10": "vehicle-car",
42
+ "11": "vehicle-truck",
43
+ "12": "vehicle-bus",
44
+ "13": "vehicle-tramtrain",
45
+ "14": "vehicle-motorcycle",
46
+ "15": "vehicle-bicycle",
47
+ "16": "vehicle-caravan",
48
+ "17": "vehicle-cartrailer",
49
+ "18": "construction-building",
50
+ "19": "construction-door",
51
+ "20": "construction-wall",
52
+ "21": "construction-fenceguardrail",
53
+ "22": "construction-bridge",
54
+ "23": "construction-tunnel",
55
+ "24": "construction-stairs",
56
+ "25": "object-pole",
57
+ "26": "object-trafficsign",
58
+ "27": "object-trafficlight",
59
+ "28": "nature-vegetation",
60
+ "29": "nature-terrain",
61
+ "30": "sky",
62
+ "31": "void-ground",
63
+ "32": "void-dynamic",
64
+ "33": "void-static",
65
+ "34": "void-unclear"
66
+ },
67
+ "image_size": 224,
68
+ "initializer_range": 0.02,
69
+ "label2id": {
70
+ "construction-bridge": 22,
71
+ "construction-building": 18,
72
+ "construction-door": 19,
73
+ "construction-fenceguardrail": 21,
74
+ "construction-stairs": 24,
75
+ "construction-tunnel": 23,
76
+ "construction-wall": 20,
77
+ "flat-crosswalk": 3,
78
+ "flat-curb": 7,
79
+ "flat-cyclinglane": 4,
80
+ "flat-parkingdriveway": 5,
81
+ "flat-railtrack": 6,
82
+ "flat-road": 1,
83
+ "flat-sidewalk": 2,
84
+ "human-person": 8,
85
+ "human-rider": 9,
86
+ "nature-terrain": 29,
87
+ "nature-vegetation": 28,
88
+ "object-pole": 25,
89
+ "object-trafficlight": 27,
90
+ "object-trafficsign": 26,
91
+ "sky": 30,
92
+ "unlabeled": 0,
93
+ "vehicle-bicycle": 15,
94
+ "vehicle-bus": 12,
95
+ "vehicle-car": 10,
96
+ "vehicle-caravan": 16,
97
+ "vehicle-cartrailer": 17,
98
+ "vehicle-motorcycle": 14,
99
+ "vehicle-tramtrain": 13,
100
+ "vehicle-truck": 11,
101
+ "void-dynamic": 32,
102
+ "void-ground": 31,
103
+ "void-static": 33,
104
+ "void-unclear": 34
105
+ },
106
+ "layer_norm_eps": 1e-06,
107
+ "mlp_ratios": [
108
+ 4,
109
+ 4,
110
+ 4,
111
+ 4
112
+ ],
113
+ "model_type": "segformer",
114
+ "num_attention_heads": [
115
+ 1,
116
+ 2,
117
+ 5,
118
+ 8
119
+ ],
120
+ "num_channels": 3,
121
+ "num_encoder_blocks": 4,
122
+ "patch_sizes": [
123
+ 7,
124
+ 3,
125
+ 3,
126
+ 3
127
+ ],
128
+ "reshape_last_stage": true,
129
+ "semantic_loss_ignore_index": 255,
130
+ "sr_ratios": [
131
+ 8,
132
+ 4,
133
+ 2,
134
+ 1
135
+ ],
136
+ "strides": [
137
+ 4,
138
+ 2,
139
+ 2,
140
+ 2
141
+ ],
142
+ "torch_dtype": "float32",
143
+ "transformers_version": "4.44.2"
144
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c419e4a6c6ebfc217199d9e0ce22414658b1a02ccc6b5e60b335c4b51c4f4c46
3
+ size 14918708
runs/Sep30_01-33-27_88153ec10635/events.out.tfevents.1727660022.88153ec10635.2395.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9bf10de6bf19d5f5d0c286ab1bc6efad50db2ccf47a75e27bc10712d0660f179
3
+ size 375464
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:98214892f2b0e48a6653acfdbd9e883278ad26dc77d08313a7edec712114b6cf
3
+ size 5304