File size: 5,175 Bytes
d75e4c9 d5b0334 d51dce1 54b6dd3 d51dce1 2b6cbbd 54b6dd3 d51dce1 54b6dd3 d51dce1 54b6dd3 d51dce1 54b6dd3 c2c7895 54b6dd3 d51dce1 54b6dd3 d51dce1 54b6dd3 d51dce1 54b6dd3 d51dce1 54b6dd3 d51dce1 54b6dd3 d51dce1 54b6dd3 d51dce1 54b6dd3 d51dce1 54b6dd3 d51dce1 54b6dd3 d909cd1 54b6dd3 d51dce1 54b6dd3 d51dce1 54b6dd3 d51dce1 54b6dd3 d51dce1 54b6dd3 d51dce1 54b6dd3 d51dce1 54b6dd3 d51dce1 54b6dd3 d51dce1 54b6dd3 d51dce1 54b6dd3 d51dce1 54b6dd3 d51dce1 54b6dd3 d51dce1 f505f90 d5b0334 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
---
license: mit
language:
- en
- ro
base_model:
- LLMLit/LLMLit
tags:
- LLMLiT
- Romania
- LLM
---
# Model Card for LLMLit
## Quick Summary
LLMLit is a high-performance, multilingual large language model (LLM) fine-tuned from Meta's Llama 3.1 8B Instruct model. Designed for both English and Romanian NLP tasks, LLMLit leverages advanced instruction-following capabilities to provide accurate, context-aware, and efficient results across diverse applications.
## Model Details
### Model Description
LLMLit is tailored to handle a wide array of tasks, including content generation, summarization, question answering, and more, in both English and Romanian. The model is fine-tuned with a focus on high-quality instruction adherence and context understanding. It is a versatile tool for developers, researchers, and businesses seeking reliable NLP solutions.
- **Developed by:** LLMLit Development Team
- **Funded by:** Open-source contributions and private sponsors
- **Shared by:** LLMLit Community
- **Model type:** Large Language Model (Instruction-tuned)
- **Languages:** English (en), Romanian (ro)
- **License:** MIT
- **Fine-tuned from model:** meta-llama/Llama-3.1-8B-Instruct
### Model Sources
- **Repository:** [GitHub Repository Link](https://github.com/PyThaGoAI/LLMLit)
- **Paper:** [To be published]
- **Demo:** [Coming Soon)
## Uses
### Direct Use
LLMLit can be directly applied to tasks such as:
- Generating human-like text responses
- Translating between English and Romanian
- Summarizing articles, reports, or documents
- Answering complex questions with context sensitivity
### Downstream Use
When fine-tuned or integrated into larger ecosystems, LLMLit can be utilized for:
- Chatbots and virtual assistants
- Educational tools for bilingual environments
- Legal or medical document analysis
- E-commerce and customer support automation
### Out-of-Scope Use
LLMLit is not suitable for:
- Malicious or unethical applications, such as spreading misinformation
- Highly sensitive or critical decision-making without human oversight
- Tasks requiring real-time, low-latency performance in constrained environments
## Bias, Risks, and Limitations
### Bias
- LLMLit inherits biases present in the training data. It may produce outputs that reflect societal or cultural biases.
### Risks
- Misuse of the model could lead to misinformation or harm.
- Inaccurate responses in complex or domain-specific queries.
### Limitations
- Performance is contingent on the quality of input instructions.
- Limited understanding of niche or highly technical domains.
### Recommendations
- Always review model outputs for accuracy, especially in sensitive applications.
- Fine-tune or customize for domain-specific tasks to minimize risks.
## How to Get Started with the Model
To use LLMLit, install the required libraries and load the model as follows:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
# Load the model and tokenizer
model = AutoModelForCausalLM.from_pretrained("llmlit/LLMLit-0.2-8B-Instruct")
tokenizer = AutoTokenizer.from_pretrained("llmlit/LLMLit-0.2-8B-Instruct")
# Generate text
inputs = tokenizer("Your prompt here", return_tensors="pt")
outputs = model.generate(**inputs, max_length=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
## Training Details
### Training Data
LLMLit is fine-tuned on a diverse dataset containing bilingual (English and Romanian) content, ensuring both linguistic accuracy and cultural relevance.
### Training Procedure
#### Preprocessing
- Data was filtered for high-quality, instruction-based examples.
- Augmentation techniques were used to balance linguistic domains.
#### Training Hyperparameters
- **Training regime:** Mixed precision (fp16)
- **Batch size:** 512
- **Epochs:** 3
- **Learning rate:** 2e-5
#### Speeds, Sizes, Times
- **Checkpoint size:** ~16GB
- **Training time:** Approx. 1 week on 8 A100 GPUs
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
Evaluation was conducted on multilingual benchmarks, such as:
- FLORES-101 (Translation accuracy)
- HELM (Instruction-following capabilities)
#### Factors
Evaluation considered:
- Linguistic fluency
- Instruction adherence
- Contextual understanding
#### Metrics
- BLEU for translation tasks
- ROUGE-L for summarization
- Human evaluation scores for instruction tasks
### Results
LLMLit achieves state-of-the-art performance on instruction-following tasks for English and Romanian, with BLEU scores surpassing comparable models.
#### Summary
LLMLit excels in bilingual NLP tasks, offering robust performance across diverse domains while maintaining instruction adherence and linguistic accuracy.
## Model Examination
Efforts to interpret the model include:
- Attention visualization
- Prompt engineering guides
- Bias audits
## Environmental Impact
Training LLMLit resulted in estimated emissions of ~200 kg CO2eq. Carbon offsets were purchased to mitigate environmental impact. Future optimizations aim to reduce energy consumption.

--- |