File size: 1,825 Bytes
0f09412
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eda9d94
0f09412
 
 
 
 
 
eda9d94
0f09412
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
---
license: cc-by-nc-4.0
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: videomae-base-finetuned-ucf101
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# videomae-base-finetuned-ucf101

This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on [UCF101](https://www.crcv.ucf.edu/data/UCF101.php) dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1001
- Accuracy: 0.8054

## Model description

[transformers.VideoMAEForVideoClassification](https://huggingface.co/docs/transformers/model_doc/videomae#transformers.VideoMAEForVideoClassification)

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 19780

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 1.0704        | 0.2   | 3956  | 1.7583          | 0.5346   |
| 0.1936        | 1.2   | 7912  | 1.0780          | 0.7189   |
| 0.1014        | 2.2   | 11868 | 1.1839          | 0.7416   |
| 0.0049        | 3.2   | 15824 | 1.0054          | 0.7901   |
| 0.0012        | 4.2   | 19780 | 0.9529          | 0.8205   |


### Framework versions

- Transformers 4.30.2
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3