--- license: cc-by-nc-4.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: videomae-base-finetuned-ucf101 results: [] --- # videomae-base-finetuned-ucf101 This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on [UCF101](https://www.crcv.ucf.edu/data/UCF101.php) dataset. It achieves the following results on the evaluation set: - Loss: 1.1001 - Accuracy: 0.8054 ## Model description [transformers.VideoMAEForVideoClassification](https://huggingface.co/docs/transformers/model_doc/videomae#transformers.VideoMAEForVideoClassification) ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 19780 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.0704 | 0.2 | 3956 | 1.7583 | 0.5346 | | 0.1936 | 1.2 | 7912 | 1.0780 | 0.7189 | | 0.1014 | 2.2 | 11868 | 1.1839 | 0.7416 | | 0.0049 | 3.2 | 15824 | 1.0054 | 0.7901 | | 0.0012 | 4.2 | 19780 | 0.9529 | 0.8205 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3