File size: 11,596 Bytes
9fad7fb f0d00db 9fad7fb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 |
import torch.nn as nn
import torch
from .configuration_mamba import MambaConfig
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from transformers.modeling_utils import PreTrainedModel
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast
import math
import json
import torch
import torch.nn as nn
import torch.nn.functional as F
from dataclasses import dataclass
from einops import rearrange, repeat, einsum
from typing import Optional , Union ,Tuple
# Dear contributors of the https://github.com/johnma2006/mamba-minimal/tree/master repository, special thanks to Albert Gu and Tri Dao for their articles. (https://arxiv.org/abs/2312.00752)
class MambaRMSNorm(nn.Module):
def __init__(self,
d_model: int,
eps: float = 1e-5):
super().__init__()
self.eps = eps
self.weight = nn.Parameter(torch.ones(d_model))
def forward(self, x):
output = x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps) * self.weight
return output
class MambaBlock(nn.Module):
def __init__(self, config: MambaConfig):
"""A single Mamba block, as described in Figure 3 in Section 3.4 in the Mamba paper [1]."""
super().__init__()
self.config = config
self.in_proj = nn.Linear(config.d_model, config.d_inner * 2, bias=config.bias)
self.conv1d = nn.Conv1d(
in_channels=config.d_inner,
out_channels=config.d_inner,
bias=config.conv_bias,
kernel_size=config.d_conv,
groups=config.d_inner,
padding=config.d_conv - 1,
)
# x_proj takes in `x` and outputs the input-specific Δ, B, C
self.x_proj = nn.Linear(config.d_inner, config.dt_rank + config.d_state * 2, bias=False)
# dt_proj projects Δ from dt_rank to d_in
self.dt_proj = nn.Linear(config.dt_rank, config.d_inner, bias=True)
A = repeat(torch.arange(1, config.d_state + 1), 'n -> d n', d=config.d_inner)
self.A_log = nn.Parameter(torch.log(A))
self.D = nn.Parameter(torch.ones(config.d_inner))
self.out_proj = nn.Linear(config.d_inner, config.d_model, bias=config.bias)
self.norm = MambaRMSNorm(config.d_model)
def forward(self, x):
"""Mamba block forward. This looks the same as Figure 3 in Section 3.4 in the Mamba paper [1].
Args:
x: shape (b, l, d) (See Glossary at top for definitions of b, l, d_in, n...)
Returns:
output: shape (b, l, d)
Official Implementation:
class Mamba, https://github.com/state-spaces/mamba/blob/main/mamba_ssm/modules/mamba_simple.py#L119
mamba_inner_ref(), https://github.com/state-spaces/mamba/blob/main/mamba_ssm/ops/selective_scan_interface.py#L311
"""
(b, l, d) = x.shape
x_copy = x # There was a separate class for residual, I deleted that part and added it here.
x = self.norm(x)
x_and_res = self.in_proj(x) # shape (b, l, 2 * d_in)
(x, res) = x_and_res.split(split_size=[self.config.d_inner, self.config.d_inner], dim=-1)
x = rearrange(x, 'b l d_in -> b d_in l')
x = self.conv1d(x)[:, :, :l]
x = rearrange(x, 'b d_in l -> b l d_in')
x = F.silu(x)
y = self.ssm(x)
y = y * F.silu(res)
output = self.out_proj(y) + x_copy
return output
def ssm(self, x):
"""Runs the SSM. See:
- Algorithm 2 in Section 3.2 in the Mamba paper [1]
- run_SSM(A, B, C, u) in The Annotated S4 [2]
Args:
x: shape (b, l, d_in) (See Glossary at top for definitions of b, l, d_in, n...)
Returns:
output: shape (b, l, d_in)
Official Implementation:
mamba_inner_ref(), https://github.com/state-spaces/mamba/blob/main/mamba_ssm/ops/selective_scan_interface.py#L311
"""
(d_in, n) = self.A_log.shape
# Compute ∆ A B C D, the state space parameters.
# A, D are input independent (see Mamba paper [1] Section 3.5.2 "Interpretation of A" for why A isn't selective)
# ∆, B, C are input-dependent (this is a key difference between Mamba and the linear time invariant S4,
# and is why Mamba is called **selective** state spaces)
A = -torch.exp(self.A_log.float()) # shape (d_in, n)
D = self.D.float()
x_dbl = self.x_proj(x) # (b, l, dt_rank + 2*n)
(delta, B, C) = x_dbl.split(split_size=[self.config.dt_rank, n, n], dim=-1) # delta: (b, l, dt_rank). B, C: (b, l, n)
delta = F.softplus(self.dt_proj(delta)) # (b, l, d_in)
y = self.selective_scan(x, delta, A, B, C, D) # This is similar to run_SSM(A, B, C, u) in The Annotated S4 [2]
return y
def selective_scan(self, u, delta, A, B, C, D):
"""Does selective scan algorithm. See:
- Section 2 State Space Models in the Mamba paper [1]
- Algorithm 2 in Section 3.2 in the Mamba paper [1]
- run_SSM(A, B, C, u) in The Annotated S4 [2]
This is the classic discrete state space formula:
x(t + 1) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)
except B and C (and the step size delta, which is used for discretization) are dependent on the input x(t).
Args:
u: shape (b, l, d_in) (See Glossary at top for definitions of b, l, d_in, n...)
delta: shape (b, l, d_in)
A: shape (d_in, n)
B: shape (b, l, n)
C: shape (b, l, n)
D: shape (d_in,)
Returns:
output: shape (b, l, d_in)
Official Implementation:
selective_scan_ref(), https://github.com/state-spaces/mamba/blob/main/mamba_ssm/ops/selective_scan_interface.py#L86
Note: I refactored some parts out of `selective_scan_ref` out, so the functionality doesn't match exactly.
"""
(b, l, d_in) = u.shape
n = A.shape[1]
# Discretize continuous parameters (A, B)
# - A is discretized using zero-order hold (ZOH) discretization (see Section 2 Equation 4 in the Mamba paper [1])
# - B is discretized using a simplified Euler discretization instead of ZOH. From a discussion with authors:
# "A is the more important term and the performance doesn't change much with the simplication on B"
deltaA = torch.exp(einsum(delta, A, 'b l d_in, d_in n -> b d_in l n'))
deltaB_u = einsum(delta, B, u, 'b l d_in, b l n, b l d_in -> b d_in l n')
# Perform selective scan (see scan_SSM() in The Annotated S4 [2])
x = torch.zeros((b, d_in, n), device=deltaA.device)
ys = []
for i in range(l):
x = deltaA[:, :, i] * x + deltaB_u[:, :, i]
y = einsum(x, C[:, i, :], 'b d_in n, b n -> b d_in')
ys.append(y)
y = torch.stack(ys, dim=1) # shape (b, l, d_in)
y = y + u * D
return y
class MambaPreTrainedModel(PreTrainedModel):
config_class = MambaConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["MambaBlock"]
def _init_weights(self, module):
std = 0.02
if isinstance(module, (nn.Linear, nn.Conv1d)):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
class MambaModel(MambaPreTrainedModel):
def __init__(self, config: MambaConfig):
"""Full Mamba model.
Mamba model decoder consisting of *config.n_layer* layers. Each layer is a [`MambaBlock`]
Args:
config: MambaConfig
"""
super().__init__(config)
self.config = config
self.embedding = nn.Embedding(config.vocab_size, config.d_model)
self.layers = nn.ModuleList([MambaBlock(config) for _ in range(config.n_layer)])
self.norm_f = MambaRMSNorm(config.d_model)
self.gradient_checkpointing = False
self.post_init()
def get_input_embeddings(self):
return self.embedding
def set_input_embeddings(self, value):
self.embedding = value
def forward(self,
input_ids: torch.LongTensor = None,
return_dict: Optional[bool] = None,
)-> Union[Tuple, BaseModelOutputWithPast]:
x = self.embedding(input_ids)
all_hidden_states = list()
for layer in self.layers:
x = layer(x)
all_hidden_states.append(x)
hidden_states = self.norm_f(x)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
)
class MambaForCausalLM(MambaPreTrainedModel):
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config):
super().__init__(config)
self.model = MambaModel(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False)
self.lm_head.weight = self.model.embedding.weight
self.post_init()
def get_input_embeddings(self):
return self.model.embedding
def set_input_embeddings(self, value):
self.model.embedding = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
def forward(self,
input_ids: torch.LongTensor = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
)-> Union[Tuple, CausalLMOutputWithPast]:
outputs = self.model(
input_ids=input_ids,
return_dict=return_dict,
)
hidden_states = outputs[0]
logits = self.lm_head(hidden_states)
logits = logits.float()
loss = None
if labels is not None:
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
loss_fct = CrossEntropyLoss()
shift_logits = shift_logits.view(-1, self.config.vocab_size)
shift_labels = shift_labels.view(-1)
shift_labels = shift_labels.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
)
def prepare_inputs_for_generation(
self, input_ids, **kwargs
):
model_inputs = {"input_ids": input_ids}
return model_inputs
|