Create modeling_xglm.py
Browse files- modeling_xglm.py +948 -0
modeling_xglm.py
ADDED
@@ -0,0 +1,948 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021 The Fairseq Authors The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" PyTorch XGLM model."""
|
16 |
+
|
17 |
+
|
18 |
+
import math
|
19 |
+
from typing import List, Optional, Tuple, Union
|
20 |
+
|
21 |
+
import torch
|
22 |
+
import torch.utils.checkpoint
|
23 |
+
from torch import nn
|
24 |
+
from torch.nn import CrossEntropyLoss
|
25 |
+
|
26 |
+
from transformers.activations import ACT2FN
|
27 |
+
from transformers.modeling_attn_mask_utils import _prepare_4d_attention_mask, _prepare_4d_causal_attention_mask
|
28 |
+
from transformers.modeling_outputs import BaseModelOutputWithPastAndCrossAttentions, CausalLMOutputWithCrossAttentions ,SequenceClassifierOutputWithPast
|
29 |
+
from transformers.modeling_utils import PreTrainedModel
|
30 |
+
from transformers.utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
|
31 |
+
from transformers.configuration_xglm import XGLMConfig
|
32 |
+
|
33 |
+
|
34 |
+
logger = logging.get_logger(__name__)
|
35 |
+
|
36 |
+
_CHECKPOINT_FOR_DOC = "facebook/xglm-564M"
|
37 |
+
_CONFIG_FOR_DOC = "XGLMConfig"
|
38 |
+
|
39 |
+
|
40 |
+
XGLM_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
41 |
+
"facebook/xglm-564M",
|
42 |
+
# See all XGLM models at https://huggingface.co/models?filter=xglm
|
43 |
+
]
|
44 |
+
|
45 |
+
XGLM_START_DOCSTRING = r"""
|
46 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
47 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
48 |
+
etc.)
|
49 |
+
|
50 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
51 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
52 |
+
and behavior.
|
53 |
+
|
54 |
+
Parameters:
|
55 |
+
config ([`XGLMConfig`]):
|
56 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
57 |
+
load the weights associated with the model, only the configuration. Check out the
|
58 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
59 |
+
"""
|
60 |
+
|
61 |
+
XGLM_INPUTS_DOCSTRING = r"""
|
62 |
+
Args:
|
63 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
64 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
65 |
+
it.
|
66 |
+
|
67 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
68 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
69 |
+
|
70 |
+
[What are input IDs?](../glossary#input-ids)
|
71 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
72 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
73 |
+
|
74 |
+
- 1 for tokens that are **not masked**,
|
75 |
+
- 0 for tokens that are **masked**.
|
76 |
+
|
77 |
+
[What are attention masks?](../glossary#attention-mask)
|
78 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
79 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
80 |
+
config.max_position_embeddings - 1]`.
|
81 |
+
|
82 |
+
[What are position IDs?](../glossary#position-ids)
|
83 |
+
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
|
84 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of
|
85 |
+
the decoder.
|
86 |
+
encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*):
|
87 |
+
Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values
|
88 |
+
selected in `[0, 1]`:
|
89 |
+
|
90 |
+
- 1 for tokens that are **not masked**,
|
91 |
+
- 0 for tokens that are **masked**.
|
92 |
+
|
93 |
+
[What are attention masks?](../glossary#attention-mask)
|
94 |
+
head_mask (`torch.Tensor` of shape `(num_layers, attention_heads)`, *optional*):
|
95 |
+
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
|
96 |
+
|
97 |
+
- 1 indicates the head is **not masked**,
|
98 |
+
- 0 indicates the head is **masked**.
|
99 |
+
|
100 |
+
cross_attn_head_mask (`torch.Tensor` of shape `(num_layers, attention_heads)`, *optional*):
|
101 |
+
Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`:
|
102 |
+
|
103 |
+
- 1 indicates the head is **not masked**,
|
104 |
+
- 0 indicates the head is **masked**.
|
105 |
+
|
106 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
107 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
108 |
+
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
|
109 |
+
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
|
110 |
+
|
111 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
112 |
+
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
|
113 |
+
|
114 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
115 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
116 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape
|
117 |
+
`(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you
|
118 |
+
can choose to directly pass an embedded representation. This is useful if you want more control over how to
|
119 |
+
convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix.
|
120 |
+
output_attentions (`bool`, *optional*):
|
121 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
122 |
+
tensors for more detail.
|
123 |
+
output_hidden_states (`bool`, *optional*):
|
124 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
125 |
+
more detail.
|
126 |
+
return_dict (`bool`, *optional*):
|
127 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
128 |
+
"""
|
129 |
+
|
130 |
+
|
131 |
+
class XGLMSinusoidalPositionalEmbedding(nn.Module):
|
132 |
+
"""This module produces sinusoidal positional embeddings of any length."""
|
133 |
+
|
134 |
+
def __init__(self, num_positions: int, embedding_dim: int, padding_idx: Optional[int] = None):
|
135 |
+
super().__init__()
|
136 |
+
self.offset = 2
|
137 |
+
self.embedding_dim = embedding_dim
|
138 |
+
self.padding_idx = padding_idx
|
139 |
+
self.make_weights(num_positions + self.offset, embedding_dim, padding_idx)
|
140 |
+
|
141 |
+
def make_weights(self, num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None):
|
142 |
+
emb_weights = self.get_embedding(num_embeddings, embedding_dim, padding_idx)
|
143 |
+
if hasattr(self, "weights"):
|
144 |
+
# in forward put the weights on the correct dtype and device of the param
|
145 |
+
emb_weights = emb_weights.to(dtype=self.weights.dtype, device=self.weights.device)
|
146 |
+
|
147 |
+
self.register_buffer("weights", emb_weights, persistent=False)
|
148 |
+
|
149 |
+
@staticmethod
|
150 |
+
def get_embedding(num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None):
|
151 |
+
"""
|
152 |
+
Build sinusoidal embeddings.
|
153 |
+
|
154 |
+
This matches the implementation in tensor2tensor, but differs slightly from the description in Section 3.5 of
|
155 |
+
"Attention Is All You Need".
|
156 |
+
"""
|
157 |
+
half_dim = embedding_dim // 2
|
158 |
+
emb = math.log(10000) / (half_dim - 1)
|
159 |
+
emb = torch.exp(torch.arange(half_dim, dtype=torch.float) * -emb)
|
160 |
+
emb = torch.arange(num_embeddings, dtype=torch.float).unsqueeze(1) * emb.unsqueeze(0)
|
161 |
+
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1).view(num_embeddings, -1)
|
162 |
+
if embedding_dim % 2 == 1:
|
163 |
+
# zero pad
|
164 |
+
emb = torch.cat([emb, torch.zeros(num_embeddings, 1)], dim=1)
|
165 |
+
if padding_idx is not None:
|
166 |
+
emb[padding_idx, :] = 0
|
167 |
+
|
168 |
+
return emb.to(torch.get_default_dtype())
|
169 |
+
|
170 |
+
@torch.no_grad()
|
171 |
+
def forward(self, position_ids: torch.Tensor = None, past_key_values_length: int = 0):
|
172 |
+
bsz, seq_len = position_ids.size()
|
173 |
+
position_ids += self.offset
|
174 |
+
|
175 |
+
# Expand embeddings if needed. `position_ids.max()` is NOT used to keep torch.fx compatibility.
|
176 |
+
max_pos = 2 + seq_len + past_key_values_length
|
177 |
+
if max_pos > self.weights.size(0):
|
178 |
+
self.make_weights(max_pos, self.embedding_dim, self.padding_idx)
|
179 |
+
|
180 |
+
return self.weights.index_select(0, position_ids.view(-1)).view(bsz, seq_len, self.weights.shape[-1]).detach()
|
181 |
+
|
182 |
+
|
183 |
+
class XGLMAttention(nn.Module):
|
184 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
185 |
+
|
186 |
+
def __init__(
|
187 |
+
self,
|
188 |
+
embed_dim: int,
|
189 |
+
num_heads: int,
|
190 |
+
dropout: float = 0.0,
|
191 |
+
is_decoder: bool = False,
|
192 |
+
bias: bool = True,
|
193 |
+
):
|
194 |
+
super().__init__()
|
195 |
+
self.embed_dim = embed_dim
|
196 |
+
self.num_heads = num_heads
|
197 |
+
self.dropout = dropout
|
198 |
+
self.head_dim = embed_dim // num_heads
|
199 |
+
|
200 |
+
if (self.head_dim * num_heads) != self.embed_dim:
|
201 |
+
raise ValueError(
|
202 |
+
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
|
203 |
+
f" and `num_heads`: {num_heads})."
|
204 |
+
)
|
205 |
+
self.scaling = self.head_dim**-0.5
|
206 |
+
self.is_decoder = is_decoder
|
207 |
+
|
208 |
+
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
209 |
+
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
210 |
+
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
211 |
+
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
212 |
+
|
213 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
214 |
+
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
215 |
+
|
216 |
+
def forward(
|
217 |
+
self,
|
218 |
+
hidden_states: torch.Tensor,
|
219 |
+
key_value_states: Optional[torch.Tensor] = None,
|
220 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
221 |
+
attention_mask: Optional[torch.Tensor] = None,
|
222 |
+
layer_head_mask: Optional[torch.Tensor] = None,
|
223 |
+
output_attentions: bool = False,
|
224 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
225 |
+
"""Input shape: Batch x Time x Channel"""
|
226 |
+
|
227 |
+
# if key_value_states are provided this layer is used as a cross-attention layer
|
228 |
+
# for the decoder
|
229 |
+
is_cross_attention = key_value_states is not None
|
230 |
+
|
231 |
+
bsz, tgt_len, _ = hidden_states.size()
|
232 |
+
|
233 |
+
# get query proj
|
234 |
+
query_states = self.q_proj(hidden_states) * self.scaling
|
235 |
+
# get key, value proj
|
236 |
+
if is_cross_attention and past_key_value is not None:
|
237 |
+
# reuse k,v, cross_attentions
|
238 |
+
key_states = past_key_value[0]
|
239 |
+
value_states = past_key_value[1]
|
240 |
+
elif is_cross_attention:
|
241 |
+
# cross_attentions
|
242 |
+
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
|
243 |
+
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
|
244 |
+
elif past_key_value is not None:
|
245 |
+
# reuse k, v, self_attention
|
246 |
+
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
|
247 |
+
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
|
248 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
249 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
250 |
+
else:
|
251 |
+
# self_attention
|
252 |
+
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
|
253 |
+
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
|
254 |
+
|
255 |
+
if self.is_decoder:
|
256 |
+
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
|
257 |
+
# Further calls to cross_attention layer can then reuse all cross-attention
|
258 |
+
# key/value_states (first "if" case)
|
259 |
+
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
|
260 |
+
# all previous decoder key/value_states. Further calls to uni-directional self-attention
|
261 |
+
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
|
262 |
+
# if encoder bi-directional self-attention `past_key_value` is always `None`
|
263 |
+
past_key_value = (key_states, value_states)
|
264 |
+
|
265 |
+
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
|
266 |
+
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
|
267 |
+
key_states = key_states.view(*proj_shape)
|
268 |
+
value_states = value_states.view(*proj_shape)
|
269 |
+
|
270 |
+
src_len = key_states.size(1)
|
271 |
+
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
|
272 |
+
|
273 |
+
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
|
274 |
+
raise ValueError(
|
275 |
+
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
|
276 |
+
f" {attn_weights.size()}"
|
277 |
+
)
|
278 |
+
|
279 |
+
if attention_mask is not None:
|
280 |
+
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
|
281 |
+
raise ValueError(
|
282 |
+
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
|
283 |
+
)
|
284 |
+
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
|
285 |
+
attn_weights = torch.max(
|
286 |
+
attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min, device=attn_weights.device)
|
287 |
+
)
|
288 |
+
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
|
289 |
+
|
290 |
+
# upcast to fp32 if the weights are in fp16. Please see https://github.com/huggingface/transformers/pull/17437
|
291 |
+
if attn_weights.dtype == torch.float16:
|
292 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(torch.float16)
|
293 |
+
else:
|
294 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
295 |
+
|
296 |
+
if layer_head_mask is not None:
|
297 |
+
if layer_head_mask.size() != (self.num_heads,):
|
298 |
+
raise ValueError(
|
299 |
+
f"Head mask for a single layer should be of size {(self.num_heads,)}, but is"
|
300 |
+
f" {layer_head_mask.size()}"
|
301 |
+
)
|
302 |
+
attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
|
303 |
+
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
|
304 |
+
|
305 |
+
if output_attentions:
|
306 |
+
# this operation is a bit awkward, but it's required to
|
307 |
+
# make sure that attn_weights keeps its gradient.
|
308 |
+
# In order to do so, attn_weights have to be reshaped
|
309 |
+
# twice and have to be reused in the following
|
310 |
+
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
|
311 |
+
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
|
312 |
+
else:
|
313 |
+
attn_weights_reshaped = None
|
314 |
+
|
315 |
+
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
|
316 |
+
|
317 |
+
attn_output = torch.bmm(attn_probs, value_states)
|
318 |
+
|
319 |
+
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
|
320 |
+
raise ValueError(
|
321 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
|
322 |
+
f" {attn_output.size()}"
|
323 |
+
)
|
324 |
+
|
325 |
+
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
|
326 |
+
attn_output = attn_output.transpose(1, 2)
|
327 |
+
|
328 |
+
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
|
329 |
+
# partitioned aross GPUs when using tensor-parallelism.
|
330 |
+
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
|
331 |
+
|
332 |
+
attn_output = self.out_proj(attn_output)
|
333 |
+
|
334 |
+
return attn_output, attn_weights_reshaped, past_key_value
|
335 |
+
|
336 |
+
|
337 |
+
class XGLMDecoderLayer(nn.Module):
|
338 |
+
def __init__(self, config: XGLMConfig):
|
339 |
+
super().__init__()
|
340 |
+
self.embed_dim = config.d_model
|
341 |
+
|
342 |
+
self.self_attn = XGLMAttention(
|
343 |
+
embed_dim=self.embed_dim,
|
344 |
+
num_heads=config.attention_heads,
|
345 |
+
dropout=config.attention_dropout,
|
346 |
+
is_decoder=True,
|
347 |
+
)
|
348 |
+
self.dropout = config.dropout
|
349 |
+
self.activation_fn = ACT2FN[config.activation_function]
|
350 |
+
self.activation_dropout = config.activation_dropout
|
351 |
+
|
352 |
+
if config.add_cross_attention:
|
353 |
+
self.encoder_attn = XGLMAttention(
|
354 |
+
embed_dim=self.embed_dim,
|
355 |
+
num_heads=config.attention_heads,
|
356 |
+
dropout=config.attention_dropout,
|
357 |
+
is_decoder=True,
|
358 |
+
)
|
359 |
+
self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim)
|
360 |
+
|
361 |
+
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
|
362 |
+
self.fc1 = nn.Linear(self.embed_dim, config.ffn_dim)
|
363 |
+
self.fc2 = nn.Linear(config.ffn_dim, self.embed_dim)
|
364 |
+
self.final_layer_norm = nn.LayerNorm(self.embed_dim)
|
365 |
+
|
366 |
+
# Copied from transformers.models.mbart.modeling_mbart.MBartDecoderLayer.forward
|
367 |
+
def forward(
|
368 |
+
self,
|
369 |
+
hidden_states: torch.Tensor,
|
370 |
+
attention_mask: Optional[torch.Tensor] = None,
|
371 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
372 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
373 |
+
layer_head_mask: Optional[torch.Tensor] = None,
|
374 |
+
cross_attn_layer_head_mask: Optional[torch.Tensor] = None,
|
375 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
376 |
+
output_attentions: Optional[bool] = False,
|
377 |
+
use_cache: Optional[bool] = True,
|
378 |
+
) -> torch.Tensor:
|
379 |
+
"""
|
380 |
+
Args:
|
381 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
382 |
+
attention_mask (`torch.FloatTensor`): attention mask of size
|
383 |
+
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
384 |
+
encoder_hidden_states (`torch.FloatTensor`):
|
385 |
+
cross attention input to the layer of shape `(batch, seq_len, embed_dim)`
|
386 |
+
encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size
|
387 |
+
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
388 |
+
layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
|
389 |
+
`(encoder_attention_heads,)`.
|
390 |
+
cross_attn_layer_head_mask (`torch.FloatTensor`): mask for cross-attention heads in a given layer of
|
391 |
+
size `(decoder_attention_heads,)`.
|
392 |
+
past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states
|
393 |
+
output_attentions (`bool`, *optional*):
|
394 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
395 |
+
returned tensors for more detail.
|
396 |
+
"""
|
397 |
+
residual = hidden_states
|
398 |
+
hidden_states = self.self_attn_layer_norm(hidden_states)
|
399 |
+
|
400 |
+
# Self Attention
|
401 |
+
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
|
402 |
+
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
|
403 |
+
# add present self-attn cache to positions 1,2 of present_key_value tuple
|
404 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
405 |
+
hidden_states=hidden_states,
|
406 |
+
past_key_value=self_attn_past_key_value,
|
407 |
+
attention_mask=attention_mask,
|
408 |
+
layer_head_mask=layer_head_mask,
|
409 |
+
output_attentions=output_attentions,
|
410 |
+
)
|
411 |
+
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
|
412 |
+
hidden_states = residual + hidden_states
|
413 |
+
|
414 |
+
# Cross-Attention Block
|
415 |
+
cross_attn_present_key_value = None
|
416 |
+
cross_attn_weights = None
|
417 |
+
if encoder_hidden_states is not None:
|
418 |
+
residual = hidden_states
|
419 |
+
hidden_states = self.encoder_attn_layer_norm(hidden_states)
|
420 |
+
|
421 |
+
# cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
|
422 |
+
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
|
423 |
+
hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn(
|
424 |
+
hidden_states=hidden_states,
|
425 |
+
key_value_states=encoder_hidden_states,
|
426 |
+
attention_mask=encoder_attention_mask,
|
427 |
+
layer_head_mask=cross_attn_layer_head_mask,
|
428 |
+
past_key_value=cross_attn_past_key_value,
|
429 |
+
output_attentions=output_attentions,
|
430 |
+
)
|
431 |
+
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
|
432 |
+
hidden_states = residual + hidden_states
|
433 |
+
|
434 |
+
# add cross-attn to positions 3,4 of present_key_value tuple
|
435 |
+
present_key_value = present_key_value + cross_attn_present_key_value
|
436 |
+
|
437 |
+
# Fully Connected
|
438 |
+
residual = hidden_states
|
439 |
+
hidden_states = self.final_layer_norm(hidden_states)
|
440 |
+
hidden_states = self.activation_fn(self.fc1(hidden_states))
|
441 |
+
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
|
442 |
+
hidden_states = self.fc2(hidden_states)
|
443 |
+
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
|
444 |
+
hidden_states = residual + hidden_states
|
445 |
+
|
446 |
+
outputs = (hidden_states,)
|
447 |
+
|
448 |
+
if output_attentions:
|
449 |
+
outputs += (self_attn_weights, cross_attn_weights)
|
450 |
+
|
451 |
+
if use_cache:
|
452 |
+
outputs += (present_key_value,)
|
453 |
+
|
454 |
+
return outputs
|
455 |
+
|
456 |
+
|
457 |
+
class XGLMPreTrainedModel(PreTrainedModel):
|
458 |
+
config_class = XGLMConfig
|
459 |
+
base_model_prefix = "model"
|
460 |
+
supports_gradient_checkpointing = True
|
461 |
+
_no_split_modules = ["XGLMDecoderLayer"]
|
462 |
+
|
463 |
+
def _init_weights(self, module):
|
464 |
+
std = self.config.init_std
|
465 |
+
if isinstance(module, nn.Linear):
|
466 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
467 |
+
if module.bias is not None:
|
468 |
+
module.bias.data.zero_()
|
469 |
+
elif isinstance(module, nn.Embedding):
|
470 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
471 |
+
if module.padding_idx is not None:
|
472 |
+
module.weight.data[module.padding_idx].zero_()
|
473 |
+
|
474 |
+
|
475 |
+
@add_start_docstrings(
|
476 |
+
"The bare XGLM Model transformer outputting raw hidden-states without any specific head on top.",
|
477 |
+
XGLM_START_DOCSTRING,
|
478 |
+
)
|
479 |
+
class XGLMModel(XGLMPreTrainedModel):
|
480 |
+
"""
|
481 |
+
Transformer decoder consisting of *config.num_layers* layers. Each layer is a [`XGLMDecoderLayer`]
|
482 |
+
|
483 |
+
Args:
|
484 |
+
config: XGLMConfig
|
485 |
+
embed_tokens (nn.Embedding): output embedding
|
486 |
+
"""
|
487 |
+
|
488 |
+
def __init__(self, config: XGLMConfig, embed_tokens: Optional[nn.Embedding] = None):
|
489 |
+
super().__init__(config)
|
490 |
+
self.dropout = config.dropout
|
491 |
+
self.layerdrop = config.layerdrop
|
492 |
+
self.padding_idx = config.pad_token_id
|
493 |
+
self.max_target_positions = config.max_position_embeddings
|
494 |
+
self.embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0
|
495 |
+
|
496 |
+
if embed_tokens is not None:
|
497 |
+
self.embed_tokens = embed_tokens
|
498 |
+
else:
|
499 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.d_model, self.padding_idx)
|
500 |
+
|
501 |
+
self.embed_positions = XGLMSinusoidalPositionalEmbedding(
|
502 |
+
config.max_position_embeddings,
|
503 |
+
config.d_model,
|
504 |
+
config.pad_token_id,
|
505 |
+
)
|
506 |
+
self.layers = nn.ModuleList([XGLMDecoderLayer(config) for _ in range(config.num_layers)])
|
507 |
+
self.layer_norm = nn.LayerNorm(config.d_model)
|
508 |
+
|
509 |
+
self.gradient_checkpointing = False
|
510 |
+
# Initialize weights and apply final processing
|
511 |
+
self.post_init()
|
512 |
+
|
513 |
+
def get_input_embeddings(self):
|
514 |
+
return self.embed_tokens
|
515 |
+
|
516 |
+
def set_input_embeddings(self, value):
|
517 |
+
self.embed_tokens = value
|
518 |
+
|
519 |
+
@add_start_docstrings_to_model_forward(XGLM_INPUTS_DOCSTRING)
|
520 |
+
@add_code_sample_docstrings(
|
521 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
522 |
+
output_type=BaseModelOutputWithPastAndCrossAttentions,
|
523 |
+
config_class=_CONFIG_FOR_DOC,
|
524 |
+
)
|
525 |
+
def forward(
|
526 |
+
self,
|
527 |
+
input_ids: Optional[torch.Tensor] = None,
|
528 |
+
attention_mask: Optional[torch.Tensor] = None,
|
529 |
+
position_ids: Optional[torch.Tensor] = None,
|
530 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
531 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
532 |
+
head_mask: Optional[torch.Tensor] = None,
|
533 |
+
cross_attn_head_mask: Optional[torch.Tensor] = None,
|
534 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
535 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
536 |
+
use_cache: Optional[bool] = None,
|
537 |
+
output_attentions: Optional[bool] = None,
|
538 |
+
output_hidden_states: Optional[bool] = None,
|
539 |
+
return_dict: Optional[bool] = None,
|
540 |
+
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]:
|
541 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
542 |
+
output_hidden_states = (
|
543 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
544 |
+
)
|
545 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
546 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
547 |
+
|
548 |
+
# retrieve input_ids and inputs_embeds
|
549 |
+
if input_ids is not None and inputs_embeds is not None:
|
550 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
551 |
+
elif input_ids is not None:
|
552 |
+
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
|
553 |
+
input_shape = input_ids.size()
|
554 |
+
input_ids = input_ids.view(-1, input_shape[-1])
|
555 |
+
elif inputs_embeds is not None:
|
556 |
+
input_shape = inputs_embeds.size()[:-1]
|
557 |
+
else:
|
558 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
559 |
+
|
560 |
+
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
|
561 |
+
|
562 |
+
if position_ids is None:
|
563 |
+
position_ids = torch.arange(
|
564 |
+
past_key_values_length,
|
565 |
+
input_shape[-1] + past_key_values_length,
|
566 |
+
dtype=torch.long,
|
567 |
+
device=input_ids.device if input_ids is not None else inputs_embeds.device,
|
568 |
+
)
|
569 |
+
position_ids = position_ids.unsqueeze(0)
|
570 |
+
|
571 |
+
if inputs_embeds is None:
|
572 |
+
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
|
573 |
+
|
574 |
+
attention_mask = _prepare_4d_causal_attention_mask(
|
575 |
+
attention_mask, input_shape, inputs_embeds, past_key_values_length
|
576 |
+
)
|
577 |
+
|
578 |
+
# expand encoder attention mask
|
579 |
+
if encoder_hidden_states is not None and encoder_attention_mask is not None:
|
580 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
581 |
+
encoder_attention_mask = _prepare_4d_attention_mask(
|
582 |
+
encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
|
583 |
+
)
|
584 |
+
|
585 |
+
hidden_states = inputs_embeds + self.embed_positions(position_ids, past_key_values_length)
|
586 |
+
hidden_states = nn.functional.dropout(hidden_states, p=float(self.dropout), training=self.training)
|
587 |
+
|
588 |
+
if self.gradient_checkpointing and self.training:
|
589 |
+
if use_cache:
|
590 |
+
logger.warning_once(
|
591 |
+
"`use_cache = True` is incompatible with gradient checkpointing`. Setting `use_cache ="
|
592 |
+
" False`..."
|
593 |
+
)
|
594 |
+
use_cache = False
|
595 |
+
|
596 |
+
# decoder layers
|
597 |
+
all_hidden_states = () if output_hidden_states else None
|
598 |
+
all_self_attns = () if output_attentions else None
|
599 |
+
all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
|
600 |
+
next_decoder_cache = () if use_cache else None
|
601 |
+
|
602 |
+
# check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired
|
603 |
+
for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]):
|
604 |
+
if attn_mask is not None:
|
605 |
+
if attn_mask.size()[0] != len(self.layers):
|
606 |
+
raise ValueError(
|
607 |
+
f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for"
|
608 |
+
f" {head_mask.size()[0]}."
|
609 |
+
)
|
610 |
+
for idx, decoder_layer in enumerate(self.layers):
|
611 |
+
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
|
612 |
+
if output_hidden_states:
|
613 |
+
all_hidden_states += (hidden_states,)
|
614 |
+
if self.training:
|
615 |
+
dropout_probability = torch.rand([])
|
616 |
+
if dropout_probability < self.layerdrop:
|
617 |
+
continue
|
618 |
+
|
619 |
+
past_key_value = past_key_values[idx] if past_key_values is not None else None
|
620 |
+
|
621 |
+
if self.gradient_checkpointing and self.training:
|
622 |
+
layer_outputs = self._gradient_checkpointing_func(
|
623 |
+
decoder_layer.__call__,
|
624 |
+
hidden_states,
|
625 |
+
attention_mask,
|
626 |
+
encoder_hidden_states,
|
627 |
+
encoder_attention_mask,
|
628 |
+
head_mask[idx] if head_mask is not None else None,
|
629 |
+
cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None,
|
630 |
+
None,
|
631 |
+
output_attentions,
|
632 |
+
use_cache,
|
633 |
+
)
|
634 |
+
else:
|
635 |
+
layer_outputs = decoder_layer(
|
636 |
+
hidden_states,
|
637 |
+
attention_mask=attention_mask,
|
638 |
+
encoder_hidden_states=encoder_hidden_states,
|
639 |
+
encoder_attention_mask=encoder_attention_mask,
|
640 |
+
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
|
641 |
+
cross_attn_layer_head_mask=(
|
642 |
+
cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None
|
643 |
+
),
|
644 |
+
past_key_value=past_key_value,
|
645 |
+
output_attentions=output_attentions,
|
646 |
+
use_cache=use_cache,
|
647 |
+
)
|
648 |
+
hidden_states = layer_outputs[0]
|
649 |
+
|
650 |
+
if use_cache:
|
651 |
+
next_decoder_cache += (layer_outputs[3 if output_attentions else 1],)
|
652 |
+
|
653 |
+
if output_attentions:
|
654 |
+
all_self_attns += (layer_outputs[1],)
|
655 |
+
|
656 |
+
if encoder_hidden_states is not None:
|
657 |
+
all_cross_attentions += (layer_outputs[2],)
|
658 |
+
|
659 |
+
hidden_states = self.layer_norm(hidden_states)
|
660 |
+
|
661 |
+
# add hidden states from the last decoder layer
|
662 |
+
if output_hidden_states:
|
663 |
+
all_hidden_states += (hidden_states,)
|
664 |
+
|
665 |
+
next_cache = next_decoder_cache if use_cache else None
|
666 |
+
if not return_dict:
|
667 |
+
return tuple(
|
668 |
+
v
|
669 |
+
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions]
|
670 |
+
if v is not None
|
671 |
+
)
|
672 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
673 |
+
last_hidden_state=hidden_states,
|
674 |
+
past_key_values=next_cache,
|
675 |
+
hidden_states=all_hidden_states,
|
676 |
+
attentions=all_self_attns,
|
677 |
+
cross_attentions=all_cross_attentions,
|
678 |
+
)
|
679 |
+
|
680 |
+
|
681 |
+
@add_start_docstrings(
|
682 |
+
"""
|
683 |
+
The XGLM Model transformer with a language modeling head on top (linear layer with weights tied to the input
|
684 |
+
embeddings).
|
685 |
+
""",
|
686 |
+
XGLM_START_DOCSTRING,
|
687 |
+
)
|
688 |
+
class XGLMForCausalLM(XGLMPreTrainedModel):
|
689 |
+
base_model_prefix = "model"
|
690 |
+
_tied_weights_keys = ["lm_head.weight"]
|
691 |
+
|
692 |
+
def __init__(self, config):
|
693 |
+
super().__init__(config)
|
694 |
+
self.model = XGLMModel(config)
|
695 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
696 |
+
|
697 |
+
# Initialize weights and apply final processing
|
698 |
+
self.post_init()
|
699 |
+
|
700 |
+
def get_input_embeddings(self):
|
701 |
+
return self.model.embed_tokens
|
702 |
+
|
703 |
+
def set_input_embeddings(self, value):
|
704 |
+
self.model.embed_tokens = value
|
705 |
+
|
706 |
+
def get_output_embeddings(self):
|
707 |
+
return self.lm_head
|
708 |
+
|
709 |
+
def set_output_embeddings(self, new_embeddings):
|
710 |
+
self.lm_head = new_embeddings
|
711 |
+
|
712 |
+
@add_start_docstrings_to_model_forward(XGLM_INPUTS_DOCSTRING)
|
713 |
+
@add_code_sample_docstrings(
|
714 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
715 |
+
output_type=CausalLMOutputWithCrossAttentions,
|
716 |
+
config_class=_CONFIG_FOR_DOC,
|
717 |
+
)
|
718 |
+
def forward(
|
719 |
+
self,
|
720 |
+
input_ids: Optional[torch.Tensor] = None,
|
721 |
+
attention_mask: Optional[torch.Tensor] = None,
|
722 |
+
position_ids: Optional[torch.Tensor] = None,
|
723 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
724 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
725 |
+
head_mask: Optional[torch.Tensor] = None,
|
726 |
+
cross_attn_head_mask: Optional[torch.Tensor] = None,
|
727 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
728 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
729 |
+
labels: Optional[torch.Tensor] = None,
|
730 |
+
use_cache: Optional[bool] = None,
|
731 |
+
output_attentions: Optional[bool] = None,
|
732 |
+
output_hidden_states: Optional[bool] = None,
|
733 |
+
return_dict: Optional[bool] = None,
|
734 |
+
) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]:
|
735 |
+
r"""
|
736 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
737 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
738 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
739 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
740 |
+
"""
|
741 |
+
|
742 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
743 |
+
output_hidden_states = (
|
744 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
745 |
+
)
|
746 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
747 |
+
|
748 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
749 |
+
outputs = self.model(
|
750 |
+
input_ids=input_ids,
|
751 |
+
attention_mask=attention_mask,
|
752 |
+
position_ids=position_ids,
|
753 |
+
encoder_hidden_states=encoder_hidden_states,
|
754 |
+
encoder_attention_mask=encoder_attention_mask,
|
755 |
+
head_mask=head_mask,
|
756 |
+
cross_attn_head_mask=cross_attn_head_mask,
|
757 |
+
past_key_values=past_key_values,
|
758 |
+
inputs_embeds=inputs_embeds,
|
759 |
+
use_cache=use_cache,
|
760 |
+
output_attentions=output_attentions,
|
761 |
+
output_hidden_states=output_hidden_states,
|
762 |
+
return_dict=return_dict,
|
763 |
+
)
|
764 |
+
|
765 |
+
logits = self.lm_head(outputs[0])
|
766 |
+
|
767 |
+
loss = None
|
768 |
+
if labels is not None:
|
769 |
+
# shift labels and add a pad token to the end
|
770 |
+
shift_labels = labels.new_zeros(labels.shape)
|
771 |
+
shift_labels[:, :-1] = labels[:, 1:].clone()
|
772 |
+
shift_labels[:, -1] = self.config.pad_token_id
|
773 |
+
|
774 |
+
loss_fct = CrossEntropyLoss()
|
775 |
+
loss = loss_fct(logits.view(-1, self.config.vocab_size), shift_labels.view(-1))
|
776 |
+
|
777 |
+
if not return_dict:
|
778 |
+
output = (logits,) + outputs[1:]
|
779 |
+
return (loss,) + output if loss is not None else output
|
780 |
+
|
781 |
+
return CausalLMOutputWithCrossAttentions(
|
782 |
+
loss=loss,
|
783 |
+
logits=logits,
|
784 |
+
past_key_values=outputs.past_key_values,
|
785 |
+
hidden_states=outputs.hidden_states,
|
786 |
+
attentions=outputs.attentions,
|
787 |
+
cross_attentions=outputs.cross_attentions,
|
788 |
+
)
|
789 |
+
|
790 |
+
def prepare_inputs_for_generation(
|
791 |
+
self, input_ids, past_key_values=None, attention_mask=None, use_cache=None, **kwargs
|
792 |
+
):
|
793 |
+
if past_key_values is not None:
|
794 |
+
past_length = past_key_values[0][0].shape[2]
|
795 |
+
|
796 |
+
# Some generation methods already pass only the last input ID
|
797 |
+
if input_ids.shape[1] > past_length:
|
798 |
+
remove_prefix_length = past_length
|
799 |
+
else:
|
800 |
+
# Default to old behavior: keep only final ID
|
801 |
+
remove_prefix_length = input_ids.shape[1] - 1
|
802 |
+
|
803 |
+
input_ids = input_ids[:, remove_prefix_length:]
|
804 |
+
|
805 |
+
position_ids = kwargs.get("position_ids", None)
|
806 |
+
if attention_mask is not None and position_ids is None:
|
807 |
+
# create position_ids on the fly for batch generation
|
808 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
809 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
810 |
+
if past_key_values:
|
811 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
812 |
+
else:
|
813 |
+
position_ids = None
|
814 |
+
# if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
|
815 |
+
if attention_mask is None:
|
816 |
+
attention_mask = input_ids.new_ones(input_ids.shape)
|
817 |
+
# first step, decoder_cached_states are empty
|
818 |
+
return {
|
819 |
+
"input_ids": input_ids, # encoder_outputs is defined. input_ids not needed
|
820 |
+
"attention_mask": attention_mask,
|
821 |
+
"position_ids": position_ids,
|
822 |
+
"past_key_values": past_key_values,
|
823 |
+
"use_cache": use_cache,
|
824 |
+
}
|
825 |
+
|
826 |
+
@staticmethod
|
827 |
+
def _reorder_cache(past_key_values, beam_idx):
|
828 |
+
reordered_past = ()
|
829 |
+
for layer_past in past_key_values:
|
830 |
+
reordered_past += (
|
831 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
832 |
+
)
|
833 |
+
return reordered_past
|
834 |
+
|
835 |
+
|
836 |
+
class XGLMForSequenceClassification(XGLMPreTrainedModel):
|
837 |
+
def __init__(self, config):
|
838 |
+
super().__init__(config)
|
839 |
+
self.num_labels = config.num_labels
|
840 |
+
self.transformer = XGLMModel(config)
|
841 |
+
self.score = nn.Linear(config.n_embd, self.num_labels, bias=False)
|
842 |
+
self.model_parallel = False
|
843 |
+
self.device_map = None
|
844 |
+
|
845 |
+
|
846 |
+
self.post_init()
|
847 |
+
@add_start_docstrings_to_model_forward(XGLM_INPUTS_DOCSTRING)
|
848 |
+
@add_code_sample_docstrings(
|
849 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
850 |
+
output_type=SequenceClassifierOutputWithPast,
|
851 |
+
config_class=_CONFIG_FOR_DOC,
|
852 |
+
)
|
853 |
+
def forward(
|
854 |
+
self,
|
855 |
+
input_ids: Optional[torch.LongTensor] = None,
|
856 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
857 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
858 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
859 |
+
position_ids: Optional[torch.LongTensor] = None,
|
860 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
861 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
862 |
+
labels: Optional[torch.LongTensor] = None,
|
863 |
+
use_cache: Optional[bool] = None,
|
864 |
+
output_attentions: Optional[bool] = None,
|
865 |
+
output_hidden_states: Optional[bool] = None,
|
866 |
+
return_dict: Optional[bool] = None,
|
867 |
+
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
868 |
+
r"""
|
869 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
870 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
871 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
872 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
873 |
+
"""
|
874 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
875 |
+
|
876 |
+
transformer_outputs = self.transformer(
|
877 |
+
input_ids,
|
878 |
+
past_key_values=past_key_values,
|
879 |
+
attention_mask=attention_mask,
|
880 |
+
token_type_ids=token_type_ids,
|
881 |
+
position_ids=position_ids,
|
882 |
+
head_mask=head_mask,
|
883 |
+
inputs_embeds=inputs_embeds,
|
884 |
+
use_cache=use_cache,
|
885 |
+
output_attentions=output_attentions,
|
886 |
+
output_hidden_states=output_hidden_states,
|
887 |
+
return_dict=return_dict,
|
888 |
+
)
|
889 |
+
hidden_states = transformer_outputs[0]
|
890 |
+
logits = self.score(hidden_states)
|
891 |
+
|
892 |
+
if input_ids is not None:
|
893 |
+
batch_size, sequence_length = input_ids.shape[:2]
|
894 |
+
else:
|
895 |
+
batch_size, sequence_length = inputs_embeds.shape[:2]
|
896 |
+
|
897 |
+
assert (
|
898 |
+
self.config.pad_token_id is not None or batch_size == 1
|
899 |
+
), "Cannot handle batch sizes > 1 if no padding token is defined."
|
900 |
+
if self.config.pad_token_id is None:
|
901 |
+
sequence_lengths = -1
|
902 |
+
else:
|
903 |
+
if input_ids is not None:
|
904 |
+
sequence_lengths = (torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1).to(
|
905 |
+
logits.device
|
906 |
+
)
|
907 |
+
else:
|
908 |
+
sequence_lengths = -1
|
909 |
+
logger.warning(
|
910 |
+
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
|
911 |
+
"unexpected if using padding tokens in conjunction with `inputs_embeds.`"
|
912 |
+
)
|
913 |
+
|
914 |
+
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
915 |
+
|
916 |
+
loss = None
|
917 |
+
if labels is not None:
|
918 |
+
if self.config.problem_type is None:
|
919 |
+
if self.num_labels == 1:
|
920 |
+
self.config.problem_type = "regression"
|
921 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
922 |
+
self.config.problem_type = "single_label_classification"
|
923 |
+
else:
|
924 |
+
self.config.problem_type = "multi_label_classification"
|
925 |
+
|
926 |
+
if self.config.problem_type == "regression":
|
927 |
+
loss_fct = MSELoss()
|
928 |
+
if self.num_labels == 1:
|
929 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
930 |
+
else:
|
931 |
+
loss = loss_fct(pooled_logits, labels)
|
932 |
+
elif self.config.problem_type == "single_label_classification":
|
933 |
+
loss_fct = CrossEntropyLoss()
|
934 |
+
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
935 |
+
elif self.config.problem_type == "multi_label_classification":
|
936 |
+
loss_fct = BCEWithLogitsLoss()
|
937 |
+
loss = loss_fct(pooled_logits, labels)
|
938 |
+
if not return_dict:
|
939 |
+
output = (pooled_logits,) + transformer_outputs[1:]
|
940 |
+
return ((loss,) + output) if loss is not None else output
|
941 |
+
|
942 |
+
return SequenceClassifierOutputWithPast(
|
943 |
+
loss=loss,
|
944 |
+
logits=pooled_logits,
|
945 |
+
past_key_values=transformer_outputs.past_key_values,
|
946 |
+
hidden_states=transformer_outputs.hidden_states,
|
947 |
+
attentions=transformer_outputs.attentions,
|
948 |
+
)
|