--- license: cc-by-sa-4.0 base_model: - facebook/nllb-200-3.3B pipeline_tag: translation --- # AraDiCE-msa-to-lev: An MSA to Levantine Machine Translation Model Based on NLLB-3.3B This repository includes an MSA to Levantine machine translation model. This model was used to curate dialectal benchmarks for the AraDiCE paper (citation below). The human post-edited benchmarks can be foundhere. ## Sample Usage ```python from transformers import AutoModelForSeq2SeqLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("QCRI/AraDiCE-msa-to-lev") model = AutoModelForSeq2SeqLM.from_pretrained("QCRI/AraDiCE-msa-to-lev") article = "من مصلحتك أن ترحل من كازابلانكا لفترة. هناك موقع لفرنسا الحرة بالقرب من برازفيل. قد أسهل لك العبور." inputs = tokenizer(article, return_tensors="pt") translated_tokens = model.generate( **inputs, forced_bos_token_id=tokenizer.convert_tokens_to_ids("ajp_Arab"), max_length=30 ) translation = tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)[0] print(translation) ``` ## License The model is distributed under the **Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (CC BY-NC-SA 4.0)**. The full license text can be found in the accompanying `licenses_by-nc-sa_4.0_legalcode.txt` file. ## Citation Please find the paperhere. ``` @article{mousi2024aradicebenchmarksdialectalcultural, title={{AraDiCE}: Benchmarks for Dialectal and Cultural Capabilities in LLMs}, author={Basel Mousi and Nadir Durrani and Fatema Ahmad and Md. Arid Hasan and Maram Hasanain and Tameem Kabbani and Fahim Dalvi and Shammur Absar Chowdhury and Firoj Alam}, year={2024}, publisher={arXiv:2409.11404}, url={https://arxiv.org/abs/2409.11404}, } ```