QCRI
/

File size: 16,732 Bytes
32c6b56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f85b1bf
 
 
 
998f997
 
 
 
c244610
998f997
 
 
de095e9
998f997
 
 
0bfcf10
 
 
 
 
 
 
998f997
 
3676651
 
 
 
 
 
 
 
 
 
 
 
 
1dc55cd
 
 
 
 
 
 
 
 
 
3676651
 
 
 
 
1dc55cd
 
 
 
 
 
 
 
 
 
67a2b6c
1dc55cd
 
 
67a2b6c
 
1dc55cd
 
 
 
 
 
 
 
 
 
 
67a2b6c
3676651
 
 
 
1dc55cd
 
 
 
 
 
 
 
 
 
 
 
 
3676651
 
4bf4f99
 
3adbd21
4bf4f99
a397f21
 
4bf4f99
 
3adbd21
c244610
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4bf4f99
 
 
 
 
031534e
 
c244610
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4bf4f99
 
 
 
 
031534e
c244610
 
 
 
 
 
 
 
 
4bf4f99
3676651
 
 
 
 
998f997
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f85b1bf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
---
license: cc-by-nc-sa-4.0
datasets:
- QCRI/LlamaLens-English
- QCRI/LlamaLens-Arabic
- QCRI/LlamaLens-Hindi
language:
- ar
- en
- hi
base_model:
- meta-llama/Llama-3.1-8B-Instruct
pipeline_tag: text-generation
tags:
- Social-Media
- Hate-Speech
- Summarization
- offensive-language
- News-Genre
metrics:
- accuracy
- f1
- rouge
---
# LlamaLens: Specialized Multilingual LLM forAnalyzing News and Social Media Content

## Overview
LlamaLens is a specialized multilingual LLM designed for analyzing news and social media content. It focuses on 18 NLP tasks, leveraging 52 datasets across Arabic, English, and Hindi.

<p align="center">
<picture>
<img width="352" alt="capablities_tasks_datasets" src="./llamalens-avatar.png">
</picture>
</p>

## Dataset  
The model was trained on the [LlamaLens dataset](https://huggingface.co/collections/QCRI/llamalens-672f7e0604a0498c6a2f0fe9).

## To Replicate the Experiments  
The code to replicate the experiments is available on [GitHub](https://github.com/firojalam/LlamaLens).


## Model Inference

To utilize the LlamaLens model for inference, follow these steps:

1. **Install the Required Libraries**:

   Ensure you have the necessary libraries installed. You can do this using pip:

   ```bash
   pip install transformers torch
   ```
2. **Load the Model and Tokenizer:**:
Use the transformers library to load the LlamaLens model and its tokenizer:

```python
from transformers import AutoModelForCausalLM, AutoTokenizer

# Define model path
MODEL_PATH = "QCRI/LlamaLens"

# Load model and tokenizer
device_map = "auto"
model = AutoModelForCausalLM.from_pretrained(MODEL_PATH, device_map=device_map)
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, trust_remote_code=True)
tokenizer.pad_token = tokenizer.eos_token

```
3. **Prepare the Input:**:
Tokenize your input text:
```python
# Define task and input text
task = "classification"  # Change to "summarization" for summarization tasks
instruction = (
    "Analyze the text and indicate if it shows an emotion, then label it as joy, love, fear,"
    " anger, sadness, or surprise. Return only the label without any explanation, justification, or additional text."
)
input_text = "I am not creating anything I feel satisfied with."
output_prefix = "Summary: " if task == "summarization" else "Label: "

# Define messages for chat-based prompt format
messages = [
    {"role": "system", "content": "You are a social media expert providing accurate analysis and insights."},
    {"role": "user", "content": f"{instruction}\nInput: {input_text}"},
    {"role": "assistant", "content": output_prefix}
]

# Tokenize input
input_ids = tokenizer.apply_chat_template(
    messages,
    add_generation_prompt=False,
    continue_final_message=True,
    tokenize=True,
    padding=True,
    return_tensors="pt"
).to(model.device)



```
4. **Generate the Output:**:
Generate a response using the model:
```python
# Generate response
outputs = model.generate(
    input_ids,
    max_new_tokens=128,
    do_sample=False,
    eos_token_id=tokenizer.eos_token_id,
    pad_token_id=tokenizer.eos_token_id,
    temperature=0.001
)

# Decode and print response
response = tokenizer.decode(outputs[0][input_ids.shape[-1]:], skip_special_tokens=True)
print(response)
```

## Results

Below, we present  the performance of **L-Lens: LlamaLens** , where *"Eng"* refers to the English-instructed model and *"Native"* refers to the model trained with native language instructions. The results are compared against the SOTA (where available) and the Base: **Llama-Instruct 3.1 baseline**. The **Δ** (Delta) column indicates the difference between LlamaLens and the SOTA performance, calculated as (LlamaLens – SOTA).

---

## Arabic

|              **Task**              |                  **Dataset**                 | **Metric** | **SOTA** | **Base** | **L-Lens-Eng** | **L-Lens-Native** | **Δ (L-Lens (Eng) - SOTA)** |
|:----------------------------------:|:--------------------------------------------:|:----------:|:--------:|:---------------------:|:---------------------:|:--------------------:|:------------------------:|
|    Attentionworthiness Detection   |              CT22Attentionworthy             |    W-F1    |   0.412  |         0.158         |         0.425         |         0.454        |           0.013          |
|      Checkworthiness Detection     |               CT24_checkworthy               |   F1_Pos   |   0.569  |         0.610         |         0.502         |         0.509        |          -0.067          |
|           Claim Detection          |                   CT22Claim                  |     Acc    |   0.703  |         0.581         |         0.734         |         0.756        |           0.031          |
|       Cyberbullying Detection      |                   ArCyc_CB                   |     Acc    |   0.863  |         0.766         |         0.870         |         0.833        |           0.007          |
|          Emotion Detection         |                Emotional-Tone                |    W-F1    |   0.658  |         0.358         |         0.705         |         0.736        |           0.047          |
|          Emotion Detection         |                 NewsHeadline                 |     Acc    |   1.000  |         0.406         |         0.480         |         0.458        |          -0.520          |
|             Factuality             |                   Arafacts                   |    Mi-F1   |   0.850  |         0.210         |         0.771         |         0.738        |          -0.079          |
|             Factuality             |               COVID19Factuality              |    W-F1    |   0.831  |         0.492         |         0.800         |         0.840        |          -0.031          |
|        Harmfulness Detection       |                  CT22Harmful                 |   F1_Pos   |   0.557  |         0.507         |         0.523         |         0.535        |          -0.034          |
|        Hate Speech Detection       |        annotated-hatetweets-4-classes        |    W-F1    |   0.630  |         0.257         |         0.526         |         0.517        |          -0.104          |
|        Hate Speech Detection       |                OSACT4SubtaskB                |    Mi-F1   |   0.950  |         0.819         |         0.955         |         0.955        |           0.005          |
|         News Categorization        |                     ASND                     |    Ma-F1   |   0.770  |         0.587         |         0.919         |         0.929        |           0.149          |
|         News Categorization        |      SANADAkhbarona-news-categorization      |     Acc    |   0.940  |         0.784         |         0.954         |         0.953        |           0.014          |
|         News Categorization        |      SANADAlArabiya-news-categorization      |     Acc    |   0.974  |         0.893         |         0.987         |         0.985        |           0.013          |
|         News Categorization        |      SANADAlkhaleej-news-categorization      |     Acc    |   0.986  |         0.865         |         0.984         |         0.982        |          -0.002          |
|         News Categorization        |                UltimateDataset               |    Ma-F1   |   0.970  |         0.376         |         0.865         |         0.880        |          -0.105          |
|          News Credibility          |            NewsCredibilityDataset            |     Acc    |   0.899  |         0.455         |         0.935         |         0.933        |           0.036          |
|         News Summarization         |                     xlsum                    |     R-2    |   0.137  |         0.034         |         0.129         |         0.130        |          -0.009          |
|    Offensive Language Detection    |                   ArCyc_OFF                  |    Ma-F1   |   0.878  |         0.489         |         0.877         |         0.879        |          -0.001          |
|    Offensive Language Detection    |                OSACT4SubtaskA                |    Ma-F1   |   0.905  |         0.782         |         0.896         |         0.882        |          -0.009          |
|        Propaganda Detection        |                     ArPro                    |    Mi-F1   |   0.767  |         0.597         |         0.747         |         0.731        |          -0.020          |
|          Sarcasm Detection         |                 ArSarcasm-v2                 |   F1_Pos   |   0.584  |         0.477         |         0.520         |         0.542        |          -0.064          |
|      Sentiment Classification      |                ar_reviews_100k               |   F1_Pos   |    --    |         0.681         |         0.785         |         0.779        |            --            |
|      Sentiment Classification      |                     ArSAS                    |     Acc    |   0.920  |         0.603         |         0.800         |         0.804        |          -0.120          |
|          Stance Detection          |                    stance                    |    Ma-F1   |   0.767  |         0.608         |         0.926         |         0.881        |           0.159          |
|          Stance Detection          |           Mawqif-Arabic-Stance-main          |    Ma-F1   |   0.789  |         0.764         |         0.853         |         0.826        |           0.065          |
|       Subjectivity Detection       |                    ThatiAR                   |   f1_pos   |   0.800  |         0.562         |         0.441         |         0.383        |          -0.359          |

---

## English

|              **Task**              |                  **Dataset**                 | **Metric** | **SOTA** | **Base** | **L-Lens-Eng** | **L-Lens-Native** | **Δ (L-Lens (Eng) - SOTA)** |
|:----------------------------------:|:--------------------------------------------:|:----------:|:--------:|:---------------------:|:---------------------:|:--------------------:|:------------------------:|
|      Checkworthiness Detection     |               CT24_checkworthy               |   f1_pos   |   0.753  |         0.404         |         0.942         |         0.942        |           0.189          |
|           Claim Detection          |                claim-detection               |    Mi-F1   |    --    |         0.545         |         0.864         |         0.889        |            --            |
|       Cyberbullying Detection      |                 Cyberbullying                |     Acc    |   0.907  |         0.175         |         0.836         |         0.855        |          -0.071          |
|         Emotion Detection          |                    emotion                   |    Ma-F1   |   0.790  |         0.353         |         0.803         |         0.808        |           0.013          |
|             Factuality             |                 News_dataset                 |     Acc    |   0.920  |         0.654         |         1.000         |         1.000        |           0.080          |
|             Factuality             |                  Politifact                  |    W-F1    |   0.490  |         0.121         |         0.287         |         0.311        |          -0.203          |
|         News Categorization        |          CNN_News_Articles_2011-2022         |     Acc    |   0.940  |         0.644         |         0.970         |         0.970        |           0.030          |
|         News Categorization        |             News_Category_Dataset            |    Ma-F1   |   0.769  |         0.970         |         0.824         |         0.520        |           0.055          |
|      News Genre Categorisation     |             SemEval23T3-subtask1             |    Mi-F1   |   0.815  |         0.687         |         0.241         |         0.253        |          -0.574          |
|         News Summarization         |                     xlsum                    |     R-2    |   0.152  |         0.074         |         0.182         |         0.181        |           0.030          |
|    Offensive Language Detection    |         Offensive_Hateful_Dataset_New        |    Mi-F1   |    --    |         0.692         |         0.814         |         0.813        |            --            |
|    Offensive Language Detection    |          offensive_language_dataset          |    Mi-F1   |   0.994  |         0.646         |         0.899         |         0.893        |          -0.095          |
| Offensive Language and Hate Speech |             hate-offensive-speech            |     Acc    |   0.945  |         0.602         |         0.931         |         0.935        |          -0.014          |
|        Propaganda Detection        |                     QProp                    |    Ma-F1   |   0.667  |         0.759         |         0.963         |         0.973        |           0.296          |
|          Sarcasm Detection         | News-Headlines-Dataset-For-Sarcasm-Detection |     Acc    |   0.897  |         0.668         |         0.936         |         0.947        |           0.039          |
|      Sentiment Classification      |               NewsMTSC-dataset               |    Ma-F1   |   0.817  |         0.628         |         0.751         |         0.748        |          -0.066          |
|       Subjectivity Detection       |            clef2024-checkthat-lab            |    Ma-F1   |   0.744  |         0.535         |         0.642         |         0.628        |          -0.102          |
|

---

## Hindi

|              **Task**              |                  **Dataset**                 | **Metric** | **SOTA** | **Base** | **L-Lens-Eng** | **L-Lens-Native** | **Δ (L-Lens (Eng) - SOTA)** |
|:----------------------------------:|:--------------------------------------------:|:----------:|:--------:|:---------------------:|:---------------------:|:--------------------:|:------------------------:|
|             Factuality             |                   fake-news                  |    Mi-F1   |    --    |         0.759         |         0.994         |         0.993        |            --            |
|        Hate Speech Detection       |             hate-speech-detection            |    Mi-F1   |   0.639  |         0.750         |         0.963         |         0.963        |           0.324          |
|        Hate Speech Detection       |   Hindi-Hostility-Detection-CONSTRAINT-2021  |    W-F1    |   0.841  |         0.469         |         0.753         |         0.753        |          -0.088          |
|     Natural Language Inference     |          Natural Language Inference          |    W-F1    |   0.646  |         0.633         |         0.568         |         0.679        |          -0.078          |
|         News Summarization         |                     xlsum                    |     R-2    |   0.136  |         0.078         |         0.171         |         0.170        |           0.035          |
|    Offensive Language Detection    |          Offensive Speech Detection          |    Mi-F1   |   0.723  |         0.621         |         0.862         |         0.865        |           0.139          |
|       Cyberbullying Detection      |                 MC_Hinglish1                 |     Acc    |   0.609  |         0.233         |         0.625         |         0.627        |           0.016          |
|      Sentiment Classification      |              Sentiment Analysis              |     Acc    |   0.697  |         0.552         |         0.647         |         0.654        |          -0.050          

## Paper  
For an in-depth understanding, refer to our paper: [**LlamaLens: Specialized Multilingual LLM for Analyzing News and Social Media Content**](https://arxiv.org/pdf/2410.15308).




# License
This model is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0).


# Citation
Please cite [our paper](https://arxiv.org/pdf/2410.15308) when using this model:

```
   @article{kmainasi2024llamalensspecializedmultilingualllm,
     title={LlamaLens: Specialized Multilingual LLM for Analyzing News and Social Media Content},
     author={Mohamed Bayan Kmainasi and Ali Ezzat Shahroor and Maram Hasanain and Sahinur Rahman Laskar and Naeemul Hassan and Firoj Alam},
     year={2024},
     journal={arXiv preprint arXiv:2410.15308},
     volume={},
     number={},
     pages={},
     url={https://arxiv.org/abs/2410.15308},
     eprint={2410.15308},
     archivePrefix={arXiv},
     primaryClass={cs.CL}
   }
```