---
license: cc-by-nc-sa-4.0
datasets:
- QCRI/LlamaLens-English
- QCRI/LlamaLens-Arabic
- QCRI/LlamaLens-Hindi
language:
- ar
- en
- hi
base_model:
- meta-llama/Llama-3.1-8B-Instruct
pipeline_tag: text-generation
tags:
- Social-Media
- Hate-Speech
- Summarization
- offensive-language
- News-Genre
---
# LlamaLens: Specialized Multilingual LLM forAnalyzing News and Social Media Content
## Overview
LlamaLens is a specialized multilingual LLM designed for analyzing news and social media content. It focuses on 19 NLP tasks, leveraging 52 datasets across Arabic, English, and Hindi.
## Dataset
The model was trained on the [LlamaLens dataset](https://huggingface.co/collections/QCRI/llamalens-672f7e0604a0498c6a2f0fe9).
## To Replicate the Experiments
The code to replicate the experiments is available on [GitHub](https://github.com/firojalam/LlamaLens).
## Model Inference
To utilize the LlamaLens model for inference, follow these steps:
1. **Install the Required Libraries**:
Ensure you have the necessary libraries installed. You can do this using pip:
```bash
pip install transformers torch
```
2. **Load the Model and Tokenizer:**:
Use the transformers library to load the LlamaLens model and its tokenizer:
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
model_name = "QCRI/LlamaLens"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
```
3. **Prepare the Input:**:
Tokenize your input text:
```python
input_text = "Your input text here"
inputs = tokenizer(input_text, return_tensors="pt")
```
4. **Generate the Output:**:
Generate a response using the model:
```python
output = model.generate(**inputs)
response = tokenizer.decode(output[0], skip_special_tokens=True)
print(response)
```
## Paper
For an in-depth understanding, refer to our paper: [**LlamaLens: Specialized Multilingual LLM for Analyzing News and Social Media Content**](https://arxiv.org/pdf/2410.15308).
# License
This model is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0).
# Citation
Please cite [our paper](https://arxiv.org/pdf/2410.15308) when using this model:
```
@article{kmainasi2024llamalensspecializedmultilingualllm,
title={LlamaLens: Specialized Multilingual LLM for Analyzing News and Social Media Content},
author={Mohamed Bayan Kmainasi and Ali Ezzat Shahroor and Maram Hasanain and Sahinur Rahman Laskar and Naeemul Hassan and Firoj Alam},
year={2024},
journal={arXiv preprint arXiv:2410.15308},
volume={},
number={},
pages={},
url={https://arxiv.org/abs/2410.15308},
eprint={2410.15308},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```