Text Generation
GGUF
reasoning
preference_learning
kto
Inference Endpoints
conversational
File size: 2,105 Bytes
c013894
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
---
license: apache-2.0
datasets:
- openbmb/UltraFeedback
- openbmb/UltraInteract_pair
tags:
- reasoning
- preference_learning
- kto
pipeline_tag: text-generation
base_model: openbmb/Eurus-7b-kto
---

# openbmb/Eurus-7b-kto-GGUF

- This is quantized version of [openbmb/Eurus-7b-kto](https://huggingface.co/openbmb/Eurus-7b-kto)

# Model Description

Eurus-7B-KTO is [KTO](https://arxiv.org/abs/2402.01306) fine-tuned from [Eurus-7B-SFT](https://huggingface.co/openbmb/Eurus-7b-sft) on all multi-turn trajectory pairs in [UltraInteract](https://huggingface.co/openbmb/UltraInteract) and all pairs in [UltraFeedback](https://huggingface.co/openbmb/UltraFeedback).

It achieves the best overall performance among open-source models of similar sizes and even outperforms specialized models in corresponding domains in many cases. Notably, Eurus-7B-KTO outperforms baselines that are 5× larger.

## Usage

We apply tailored prompts for coding and math, consistent with UltraInteract data formats:

**Coding**

```
[INST] Write Python code to solve the task:
{Instruction} [/INST]
```
**Math-CoT**

```
[INST] Solve the following math problem step-by-step.
Simplify your answer as much as possible. Present your final answer as \\boxed{Your Answer}.
{Instruction} [/INST]
```

**Math-PoT**

```
[INST] Tool available:
[1] Python interpreter
When you send a message containing Python code to python, it will be executed in a stateful Jupyter notebook environment.
Solve the following math problem step-by-step.
Simplify your answer as much as possible.
{Instruction} [/INST]
```

## Evaluation
 - Eurus, both the 7B and 70B variants, achieve the best overall performance among open-source models of similar sizes. Eurus even outperforms specialized models in corresponding domains in many cases. Notably, Eurus-7B outperforms baselines that are 5× larger, and Eurus-70B achieves better performance than GPT-3.5 Turbo.
 - Preference learning with UltraInteract can further improve performance, especially in math and the multi-turn ability.
<img src="figures_main_exp.png" alt="stats" style="zoom: 40%;" />