aashish1904
commited on
Commit
•
6b71633
1
Parent(s):
32593a2
Upload README.md with huggingface_hub
Browse files
README.md
ADDED
@@ -0,0 +1,139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
---
|
3 |
+
|
4 |
+
base_model: unsloth/qwen2.5-coder-7b-instruct-bnb-4bit
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
license: apache-2.0
|
8 |
+
tags:
|
9 |
+
- text-generation-inference
|
10 |
+
- transformers
|
11 |
+
- unsloth
|
12 |
+
- qwen2
|
13 |
+
- trl
|
14 |
+
- sft
|
15 |
+
- fast-apply
|
16 |
+
- instant-apply
|
17 |
+
|
18 |
+
---
|
19 |
+
|
20 |
+
[![QuantFactory Banner](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ)](https://hf.co/QuantFactory)
|
21 |
+
|
22 |
+
|
23 |
+
# QuantFactory/FastApply-7B-v1.0-GGUF
|
24 |
+
This is quantized version of [Kortix/FastApply-7B-v1.0](https://huggingface.co/Kortix/FastApply-7B-v1.0) created using llama.cpp
|
25 |
+
|
26 |
+
# Original Model Card
|
27 |
+
|
28 |
+
|
29 |
+
|
30 |
+
# FastApply-7B-v1.0
|
31 |
+
|
32 |
+
[Github: kortix-ai/fast-apply](https://github.com/kortix-ai/fast-apply)
|
33 |
+
[Dataset: Kortix/FastApply-dataset-v1.0](https://huggingface.co/datasets/Kortix/FastApply-dataset-v1.0)
|
34 |
+
[Try it now on 👉 Google Colab](https://colab.research.google.com/drive/1aBqM8Lqso0Xfgtr75G4LFQivXcChU_36?usp=sharing)
|
35 |
+
|
36 |
+
## Model Details
|
37 |
+
|
38 |
+
### Basic Information
|
39 |
+
|
40 |
+
- **Developed by:** Kortix
|
41 |
+
- **License:** apache-2.0
|
42 |
+
- **Finetuned from model:** [unsloth/Qwen2.5-Coder-7B-Instruct-bnb-4bit](https://huggingface.co/unsloth/Qwen2.5-Coder-7B-Instruct-bnb-4bit)
|
43 |
+
|
44 |
+
### Model Description
|
45 |
+
|
46 |
+
FastApply-7B-v1.0 is a 7B model designed for instant code application, producing full file edits to power [SoftGen AI](https://softgen.ai/).
|
47 |
+
It is part of the Fast Apply pipeline for data generation and fine-tuning Qwen2.5 Coder models.
|
48 |
+
|
49 |
+
The model achieves high throughput when deployed on fast providers like Fireworks while maintaining high edit accuracy, with a speed of approximately 150 tokens/second.
|
50 |
+
|
51 |
+
## Intended Use
|
52 |
+
|
53 |
+
FastApply-7B-v1.0 is intended for use in AI-powered code editors and tools that require fast, accurate code modifications. It is particularly well-suited for:
|
54 |
+
|
55 |
+
- Instant code application tasks
|
56 |
+
- Full file edits
|
57 |
+
- Integration with AI-powered code editors like Aider and PearAI
|
58 |
+
- Local tools to reduce the cost of frontier model output
|
59 |
+
|
60 |
+
## Inference template
|
61 |
+
|
62 |
+
FastApply-7B-v1.0 is based on the Qwen2.5 Coder architecture and is fine-tuned for code editing tasks. It uses a specific prompt structure for inference:
|
63 |
+
|
64 |
+
```
|
65 |
+
<|im_start|>system
|
66 |
+
You are a coding assistant that helps merge code updates, ensuring every modification is fully integrated.<|im_end|>
|
67 |
+
<|im_start|>user
|
68 |
+
Merge all changes from the <update> snippet into the <code> below.
|
69 |
+
- Preserve the code's structure, order, comments, and indentation exactly.
|
70 |
+
- Output only the updated code, enclosed within <updated-code> and </updated-code> tags.
|
71 |
+
- Do not include any additional text, explanations, placeholders, ellipses, or code fences.
|
72 |
+
|
73 |
+
<code>{original_code}</code>
|
74 |
+
|
75 |
+
<update>{update_snippet}</update>
|
76 |
+
|
77 |
+
Provide the complete updated code.<|im_end|>
|
78 |
+
<|im_start|>assistant
|
79 |
+
```
|
80 |
+
|
81 |
+
The model's output is structured as:
|
82 |
+
|
83 |
+
```
|
84 |
+
<updated-code>[Full-complete updated file]</updated-code>
|
85 |
+
```
|
86 |
+
|
87 |
+
## Additional Information
|
88 |
+
|
89 |
+
For more details on the Fast Apply pipeline, data generation process, and deployment instructions, please refer to the [GitHub repository](https://github.com/kortix-ai/fast-apply).
|
90 |
+
|
91 |
+
## How to Use
|
92 |
+
|
93 |
+
To use the model, you can load it using the Hugging Face Transformers library:
|
94 |
+
|
95 |
+
|
96 |
+
```python
|
97 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
98 |
+
|
99 |
+
model = AutoModelForCausalLM.from_pretrained("Kortix/FastApply-7B-v1.0")
|
100 |
+
tokenizer = AutoTokenizer.from_pretrained("Kortix/FastApply-7B-v1.0")
|
101 |
+
|
102 |
+
# Prepare your input following the prompt structure mentioned above
|
103 |
+
input_text = """<|im_start|>system
|
104 |
+
You are a coding assistant that helps merge code updates, ensuring every modification is fully integrated.<|im_end|>
|
105 |
+
<|im_start|>user
|
106 |
+
Merge all changes from the <update> snippet into the <code> below.
|
107 |
+
- Preserve the code's structure, order, comments, and indentation exactly.
|
108 |
+
- Output only the updated code, enclosed within <updated-code> and </updated-code> tags.
|
109 |
+
- Do not include any additional text, explanations, placeholders, ellipses, or code fences.
|
110 |
+
|
111 |
+
<code>{original_code}</code>
|
112 |
+
|
113 |
+
<update>{update_snippet}</update>
|
114 |
+
|
115 |
+
Provide the complete updated code.<|im_end|>
|
116 |
+
<|im_start|>assistant
|
117 |
+
"""
|
118 |
+
|
119 |
+
input_text = input_text.format(
|
120 |
+
original_code=original_code,
|
121 |
+
update_snippet=update_snippet,
|
122 |
+
).strip()
|
123 |
+
|
124 |
+
# Generate the response
|
125 |
+
input_ids = tokenizer.encode(input_text, return_tensors="pt")
|
126 |
+
output = model.generate(input_ids, max_length=8192,)
|
127 |
+
|
128 |
+
response = tokenizer.decode(output[0][len(input_ids[0]):])
|
129 |
+
print(response)
|
130 |
+
|
131 |
+
# Extract the updated code from the response
|
132 |
+
updated_code = response.split("<updated-code>")[1].split("</updated-code>")[0]
|
133 |
+
```
|
134 |
+
|
135 |
+
|
136 |
+
## Evaluation:
|
137 |
+
|
138 |
+
![image/png](https://cdn-uploads.huggingface.co/production/uploads/650d7ecb23e8028a8970a203/_E6WVzuVABKB58QMx6c1c.png)
|
139 |
+
|