--- license: llama3.2 language: - zh - en - it - de - fr - ja - ko base_model: - meta-llama/Llama-3.2-3B - lianghsun/Llama-3.2-Taiwan-3B datasets: - lianghsun/tw-emergency-medicine-bench - lianghsun/tw-legal-nlp - lianghsun/tw-legal-synthetic-qa - lianghsun/tw-law-article-qa - lianghsun/tw-judgment-qa - lianghsun/tw-judgment-gist-chat - lianghsun/tw-bar-examination-2020-chat - lianghsun/tw-structured-law-article - lianghsun/tw-judgment-gist-chat - lianghsun/tw-contract-review-chat - lianghsun/reasoning-base-20k-chat - lianghsun/vulnerability-mitigation-qa-zh_tw - lianghsun/tw-instruct - rombodawg/Everything_Instruct_Multilingual - xzuyn/manythings-translations-alpaca - neural-bridge/rag-dataset-12000 - minyichen/glaive_toolcall_zh_tw pipeline_tag: text-generation library_name: transformers tags: - Taiwan - ROC - zh-tw - instruct - chat - llama3.2 - SLM model-index: - name: Llama-3.2-Taiwan-3B-Instruct results: - task: type: text-generation name: Single Choice Question dataset: type: lianghsun/tw-legal-benchmark-v1 name: tw-legal-benchmark-v1 metrics: - name: single choice type: accuracy value: 31.1 - task: type: text-generation name: Single Choice Question dataset: type: lianghsun/Formosa-bench name: (Society) Formosa Taiwan Knowledge Bench config: society split: test revision: v2024.11.27 metrics: - name: single choice type: accuracy value: 60.42 - task: type: text-generation name: Single Choice Question dataset: type: lianghsun/Formosa-bench name: (Governmnt) Formosa Taiwan Knowledge Bench config: governmnt split: test revision: v2024.11.27 metrics: - name: single choice type: accuracy value: 44.25 - task: type: text-generation name: Single Choice Question dataset: type: lianghsun/Formosa-bench name: (Geography) Formosa Taiwan Knowledge Bench config: geography split: test revision: v2024.11.27 metrics: - name: single choice type: accuracy value: 47.54 - task: type: text-generation name: Single Choice Question dataset: type: lianghsun/Formosa-bench name: (History) Formosa Taiwan Knowledge Bench config: history split: test revision: v2024.11.27 metrics: - name: single choice type: accuracy value: 60 - task: type: question-answering name: Single Choice Question dataset: type: ikala/tmmluplus name: (geography_of_taiwan) tmmlu++ config: geography_of_taiwan split: test revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c metrics: - name: single choice type: accuracy value: 36.2 - task: type: question-answering name: Single Choice Question dataset: type: ikala/tmmluplus name: (dentistry) tmmlu++ config: dentistry split: test revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c metrics: - name: single choice type: accuracy value: 33.83 - task: type: question-answering name: Single Choice Question dataset: type: ikala/tmmluplus name: (technical) tmmlu++ config: technical split: test revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c metrics: - name: single choice type: accuracy value: 35.07 - task: type: question-answering name: Single Choice Question dataset: type: ikala/tmmluplus name: (statistics_and_machine_learning) tmmlu++ config: statistics_and_machine_learning split: test revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c metrics: - name: single choice type: accuracy value: 28.57 - task: type: question-answering name: Single Choice Question dataset: type: ikala/tmmluplus name: (clinical_psychology) tmmlu++ config: clinical_psychology split: test revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c metrics: - name: single choice type: accuracy value: 29.6 - task: type: question-answering name: Single Choice Question dataset: type: ikala/tmmluplus name: (tve_design) tmmlu++ config: tve_design split: test revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c metrics: - name: single choice type: accuracy value: 38.54 - task: type: question-answering name: Single Choice Question dataset: type: ikala/tmmluplus name: (three_principles_of_people) tmmlu++ config: three_principles_of_people split: test revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c metrics: - name: single choice type: accuracy value: 48.2 - task: type: question-answering name: Single Choice Question dataset: type: ikala/tmmluplus name: (introduction_to_law) tmmlu++ config: introduction_to_law split: test revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c metrics: - name: single choice type: accuracy value: 29.96 - task: type: question-answering name: Single Choice Question dataset: type: ikala/tmmluplus name: (linear_algebra) tmmlu++ config: linear_algebra split: test revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c metrics: - name: single choice type: accuracy value: 21.43 - task: type: question-answering name: Single Choice Question dataset: type: ikala/tmmluplus name: (agriculture) tmmlu++ config: agriculture split: test revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c metrics: - name: single choice type: accuracy value: 24.5 - task: type: question-answering name: Single Choice Question dataset: type: ikala/tmmluplus name: (jce_humanities) tmmlu++ config: jce_humanities split: test revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c metrics: - name: single choice type: accuracy value: 38.89 - task: type: question-answering name: Single Choice Question dataset: type: ikala/tmmluplus name: (music) tmmlu++ config: music split: test revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c metrics: - name: single choice type: accuracy value: 25.9 - task: type: question-answering name: Single Choice Question dataset: type: ikala/tmmluplus name: (secondary_physics) tmmlu++ config: secondary_physics split: test revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c metrics: - name: single choice type: accuracy value: 33.04 - task: type: question-answering name: Single Choice Question dataset: type: ikala/tmmluplus name: (physics) tmmlu++ config: physics split: test revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c metrics: - name: single choice type: accuracy value: 27.84 - task: type: question-answering name: Single Choice Question dataset: type: ikala/tmmluplus name: (advance_chemistry) tmmlu++ config: advance_chemistry split: test revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c metrics: - name: single choice type: accuracy value: 27.64 - task: type: question-answering name: Single Choice Question dataset: type: ikala/tmmluplus name: (junior_science_exam) tmmlu++ config: junior_science_exam split: test revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c metrics: - name: single choice type: accuracy value: 30.05 - task: type: question-answering name: Single Choice Question dataset: type: ikala/tmmluplus name: (veterinary_pathology) tmmlu++ config: veterinary_pathology split: test revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c metrics: - name: single choice type: accuracy value: 25.09 - task: type: question-answering name: Single Choice Question dataset: type: ikala/tmmluplus name: (financial_analysis) tmmlu++ config: financial_analysis split: test revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c metrics: - name: single choice type: accuracy value: 25.13 - task: type: question-answering name: Single Choice Question dataset: type: ikala/tmmluplus name: (national_protection) tmmlu++ config: national_protection split: test revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c metrics: - name: single choice type: accuracy value: 42.65 - task: type: question-answering name: Single Choice Question dataset: type: ikala/tmmluplus name: (macroeconomics) tmmlu++ config: macroeconomics split: test revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c metrics: - name: single choice type: accuracy value: 26.76 - task: type: question-answering name: Single Choice Question dataset: type: ikala/tmmluplus name: (politic_science) tmmlu++ config: politic_science split: test revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c metrics: - name: single choice type: accuracy value: 27.44 - task: type: question-answering name: Single Choice Question dataset: type: ikala/tmmluplus name: (ttqav2) tmmlu++ config: ttqav2 split: test revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c metrics: - name: single choice type: accuracy value: 61.06 - task: type: question-answering name: Single Choice Question dataset: type: ikala/tmmluplus name: (junior_chinese_exam) tmmlu++ config: junior_chinese_exam split: test revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c metrics: - name: single choice type: accuracy value: 30.86 - task: type: question-answering name: Single Choice Question dataset: type: ikala/tmmluplus name: (traditional_chinese_medicine_clinical_medicine) tmmlu++ config: traditional_chinese_medicine_clinical_medicine split: test revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c metrics: - name: single choice type: accuracy value: 25.9 - task: type: question-answering name: Single Choice Question dataset: type: ikala/tmmluplus name: (junior_math_exam) tmmlu++ config: junior_math_exam split: test revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c metrics: - name: single choice type: accuracy value: 21.71 - task: type: question-answering name: Single Choice Question dataset: type: ikala/tmmluplus name: (auditing) tmmlu++ config: auditing split: test revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c metrics: - name: single choice type: accuracy value: 21.82 - task: type: question-answering name: Single Choice Question dataset: type: ikala/tmmluplus name: (anti_money_laundering) tmmlu++ config: anti_money_laundering split: test revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c metrics: - name: single choice type: accuracy value: 37.31 - task: type: question-answering name: Single Choice Question dataset: type: ikala/tmmluplus name: (pharmacology) tmmlu++ config: pharmacology split: test revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c metrics: - name: single choice type: accuracy value: 30.68 - task: type: question-answering name: Single Choice Question dataset: type: ikala/tmmluplus name: (trust_practice) tmmlu++ config: trust_practice split: test revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c metrics: - name: single choice type: accuracy value: 28.18 - task: type: question-answering name: Single Choice Question dataset: type: ikala/tmmluplus name: (tve_mathematics) tmmlu++ config: tve_mathematics split: test revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c metrics: - name: single choice type: accuracy value: 18.67 - task: type: question-answering name: Single Choice Question dataset: type: ikala/tmmluplus name: (human_behavior) tmmlu++ config: human_behavior split: test revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c metrics: - name: single choice type: accuracy value: 32.04 - task: type: question-answering name: Single Choice Question dataset: type: ikala/tmmluplus name: (pharmacy) tmmlu++ config: pharmacy split: test revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c metrics: - name: single choice type: accuracy value: 22.76 - task: type: question-answering name: Single Choice Question dataset: type: ikala/tmmluplus name: (tve_chinese_language) tmmlu++ config: tve_chinese_language split: test revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c metrics: - name: single choice type: accuracy value: 36.65 - task: type: question-answering name: Single Choice Question dataset: type: ikala/tmmluplus name: (optometry) tmmlu++ config: optometry split: test revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c metrics: - name: single choice type: accuracy value: 25.11 - task: type: question-answering name: Single Choice Question dataset: type: ikala/tmmluplus name: (physical_education) tmmlu++ config: physical_education split: test revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c metrics: - name: single choice type: accuracy value: 30.73 - task: type: question-answering name: Single Choice Question dataset: type: ikala/tmmluplus name: (organic_chemistry) tmmlu++ config: organic_chemistry split: test revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c metrics: - name: single choice type: accuracy value: 35.78 - task: type: question-answering name: Single Choice Question dataset: type: ikala/tmmluplus name: (tve_natural_sciences) tmmlu++ config: tve_natural_sciences split: test revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c metrics: - name: single choice type: accuracy value: 33.73 - task: type: question-answering name: Single Choice Question dataset: type: ikala/tmmluplus name: (education) tmmlu++ config: education split: test revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c metrics: - name: single choice type: accuracy value: 37.9 - task: type: question-answering name: Single Choice Question dataset: type: ikala/tmmluplus name: (mechanical) tmmlu++ config: mechanical split: test revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c metrics: - name: single choice type: accuracy value: 42.37 - task: type: question-answering name: Single Choice Question dataset: type: ikala/tmmluplus name: (taiwanese_hokkien) tmmlu++ config: taiwanese_hokkien split: test revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c metrics: - name: single choice type: accuracy value: 14.73 - task: type: question-answering name: Single Choice Question dataset: type: ikala/tmmluplus name: (nautical_science) tmmlu++ config: nautical_science split: test revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c metrics: - name: single choice type: accuracy value: 30.49 - task: type: question-answering name: Single Choice Question dataset: type: ikala/tmmluplus name: (business_management) tmmlu++ config: business_management split: test revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c metrics: - name: single choice type: accuracy value: 39.57 - task: type: question-answering name: Single Choice Question dataset: type: ikala/tmmluplus name: (logic_reasoning) tmmlu++ config: logic_reasoning split: test revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c metrics: - name: single choice type: accuracy value: 27.34 - task: type: question-answering name: Single Choice Question dataset: type: ikala/tmmluplus name: (marketing_management) tmmlu++ config: marketing_management split: test revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c metrics: - name: single choice type: accuracy value: 39.78 - task: type: question-answering name: Single Choice Question dataset: type: ikala/tmmluplus name: (economics) tmmlu++ config: economics split: test revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c metrics: - name: single choice type: accuracy value: 25.95 - task: type: question-answering name: Single Choice Question dataset: type: ikala/tmmluplus name: (basic_medical_science) tmmlu++ config: basic_medical_science split: test revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c metrics: - name: single choice type: accuracy value: 28.41 - task: type: question-answering name: Single Choice Question dataset: type: ikala/tmmluplus name: (occupational_therapy_for_psychological_disorders) tmmlu++ config: occupational_therapy_for_psychological_disorders split: test revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c metrics: - name: single choice type: accuracy value: 35.73 - task: type: question-answering name: Single Choice Question dataset: type: ikala/tmmluplus name: (general_principles_of_law) tmmlu++ config: general_principles_of_law split: test revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c metrics: - name: single choice type: accuracy value: 31.13 - task: type: question-answering name: Single Choice Question dataset: type: ikala/tmmluplus name: (junior_chemistry) tmmlu++ config: junior_chemistry split: test revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c metrics: - name: single choice type: accuracy value: 24.88 - task: type: question-answering name: Single Choice Question dataset: type: ikala/tmmluplus name: (veterinary_pharmacology) tmmlu++ config: veterinary_pharmacology split: test revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c metrics: - name: single choice type: accuracy value: 36.3 - task: type: question-answering name: Single Choice Question dataset: type: ikala/tmmluplus name: (educational_psychology) tmmlu++ config: educational_psychology split: test revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c metrics: - name: single choice type: accuracy value: 33.52 - task: type: question-answering name: Single Choice Question dataset: type: ikala/tmmluplus name: (finance_banking) tmmlu++ config: finance_banking split: test revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c metrics: - name: single choice type: accuracy value: 32.59 - task: type: question-answering name: Single Choice Question dataset: type: ikala/tmmluplus name: (official_document_management) tmmlu++ config: official_document_management split: test revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c metrics: - name: single choice type: accuracy value: 32.43 - task: type: question-answering name: Single Choice Question dataset: type: ikala/tmmluplus name: (fire_science) tmmlu++ config: fire_science split: test revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c metrics: - name: single choice type: accuracy value: 30.65 - task: type: question-answering name: Single Choice Question dataset: type: ikala/tmmluplus name: (junior_social_studies) tmmlu++ config: junior_social_studies split: test revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c metrics: - name: single choice type: accuracy value: 47.62 - task: type: question-answering name: Single Choice Question dataset: type: ikala/tmmluplus name: (accounting) tmmlu++ config: accounting split: test revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c metrics: - name: single choice type: accuracy value: 20.94 - task: type: question-answering name: Single Choice Question dataset: type: ikala/tmmluplus name: (engineering_math) tmmlu++ config: engineering_math split: test revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c metrics: - name: single choice type: accuracy value: 27.18 - task: type: question-answering name: Single Choice Question dataset: type: ikala/tmmluplus name: (education_(profession_level)) tmmlu++ config: education_(profession_level) split: test revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c metrics: - name: single choice type: accuracy value: 24.07 - task: type: question-answering name: Single Choice Question dataset: type: ikala/tmmluplus name: (chinese_language_and_literature) tmmlu++ config: chinese_language_and_literature split: test revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c metrics: - name: single choice type: accuracy value: 27.64 - task: type: question-answering name: Single Choice Question dataset: type: ikala/tmmluplus name: (management_accounting) tmmlu++ config: management_accounting split: test revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c metrics: - name: single choice type: accuracy value: 24.19 - task: type: question-answering name: Single Choice Question dataset: type: ikala/tmmluplus name: (culinary_skills) tmmlu++ config: culinary_skills split: test revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c metrics: - name: single choice type: accuracy value: 39.38 - task: type: question-answering name: Single Choice Question dataset: type: ikala/tmmluplus name: (administrative_law) tmmlu++ config: administrative_law split: test revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c metrics: - name: single choice type: accuracy value: 25.71 - task: type: question-answering name: Single Choice Question dataset: type: ikala/tmmluplus name: (insurance_studies) tmmlu++ config: insurance_studies split: test revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c metrics: - name: single choice type: accuracy value: 33.42 - task: type: question-answering name: Single Choice Question dataset: type: ikala/tmmluplus name: (real_estate) tmmlu++ config: real_estate split: test revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c metrics: - name: single choice type: accuracy value: 22.83 - task: type: question-answering name: Single Choice Question dataset: type: ikala/tmmluplus name: (computer_science) tmmlu++ config: computer_science split: test revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c metrics: - name: single choice type: accuracy value: 31.61 - task: type: question-answering name: Single Choice Question dataset: type: ikala/tmmluplus name: (taxation) tmmlu++ config: taxation split: test revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c metrics: - name: single choice type: accuracy value: 27.47 - task: type: question-answering name: Single Choice Question dataset: type: ikala/tmmluplus name: (trade) tmmlu++ config: trade split: test revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c metrics: - name: single choice type: accuracy value: 20.32 widget: - text: 中華民國憲法第一條 metrics: - accuracy --- [![QuantFactory Banner](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ)](https://hf.co/QuantFactory) # QuantFactory/Llama-3.2-Taiwan-3B-Instruct-GGUF This is quantized version of [lianghsun/Llama-3.2-Taiwan-3B-Instruct](https://huggingface.co/lianghsun/Llama-3.2-Taiwan-3B-Instruct) created using llama.cpp # Original Model Card # Model Card for lianghsun/Llama-3.2-Taiwan-3B-Instruct [Discord] ![image/png](https://cdn-uploads.huggingface.co/production/uploads/618dc56cbc345ca7bf95f3cd/v_cfMxTtVE6_eh0rzcy5L.png) *圖像生成來自 [OpenArt](https://openart.ai/home):An anime-style 🦙 standing proudly atop the summit of Taiwan’s [Yushan (Jade Mountain)](https://zh.wikipedia.org/wiki/%E7%8E%89%E5%B1%B1), gazing forward.* 採用 [lianghsun/Llama-3.2-Taiwan-3B](https://huggingface.co/lianghsun/Llama-3.2-Taiwan-3B) 為[基礎模型(foundation model)](https://en.wikipedia.org/wiki/Foundation_model),使用大量[中華民國台灣](https://zh.wikipedia.org/zh-tw/%E8%87%BA%E7%81%A3)的繁體中文對話集和多國語言對話集進行模型[指令微調(instruction fine-tuning)](https://www.ibm.com/topics/instruction-tuning)和多輪迭代[直接偏好優化(direct preference optimization, DPO)](https://arxiv.org/abs/2305.18290),旨在訓練出具有中華民國台灣知識及風格的[小語言模型(small langugae model, SLM)](https://www.ibm.com/think/topics/small-language-models)之對話模型。
Model Change Log | Update Date | Model Version | Key Changes | |--------------|-----------------------|-------------------------------------| | 2025/01/01 | v2025.01.01 | Fine-tuning is based on the [foundation model](https://huggingface.co/lianghsun/Llama-3.2-Taiwan-3B) version v2024.12.28, and it uses self-prepared instruction datasets for this round of fine-tuning. | | 2024/12/13 | v2024.12.13 | Completed 1st round DPO training (10/10 epochs). Preparing for next round DPO training. | | 2024/11/27 | v2024.11.27 | Completed SFT training (5/5 epochs). Preparing for multi-round DPO training. | | 2024/11/25 | v2024.11.25 | Updated model version to v2024.11.25, training progressed to (3/5) epochs. Still in SFT stage, DPO training remains pending. | | 2024/11/22 | v2024.11.22 | Initial upload: Model version v2024.11.22, training completed up to (1/5) epochs. Currently trained only on SFT, DPO training not yet performed. |
## Model Details ### Model Description - **Developed by:** [Huang Liang Hsun](https://www.linkedin.com/in/lianghsunhuang) - **Model type:** LlamaForCausalLM - **Language(s) (NLP):** Tranditional Chinese (zh-tw), English - **License:** [llama3.2](https://huggingface.co/meta-llama/Llama-3.2-1B/blob/main/LICENSE.txt) - **Fine-tuned from model:** [lianghsun/Llama-3.2-Taiwan-3B](https://huggingface.co/lianghsun/Llama-3.2-Taiwan-3B) ### Model Sources - **Repository:** [lianghsun/Llama-3.2-Taiwan-3B](https://huggingface.co/lianghsun/Llama-3.2-Taiwan-3B) - **Paper:** (WIP, show me the time) - **Playground:** [🦉 Tawian SmolLM Chat](https://huggingface.co/spaces/lianghsun/tw-smol-chat) 👈🏼 來玩看看 😻 - **Demo:** ```yaml user: 請介紹台灣 assistant: 台灣,位於亞洲東部,地處太平洋與菲律賓海之間,面積約36,000平方公里,人口約2,300萬,是民主自由的國家,經濟實力強勁,擁有世界第10大經濟體。台灣以美食、文化、自然美景著稱,還有豐富的歷史與傳統,吸引全球遊客。台灣語為官方語言,但中文也廣為使用,英語也常用於國際交流。台灣政治多元,執政黨為民進黨,台灣是全球科技產業的重鎮,擁有先進的製造業與服務業。台灣氣候溫暖潮濕,四季分明,夏季炎熱,冬季涼爽,雨季則在5月至10月。台灣的美食以小吃為主,如滷肉飯、珍珠 ``` ## Uses ### Direct Use 本模型已經具備有繁體中文對話能力,使用者可以直接部署推論端點使用。 ### Downstream Use 若需強化模型在特定領域的知識,可透過微調進一步提升其性能與專業能力。 ### Out-of-Scope Use 本模型旨在提供資訊,不參與任何政治或法律問題的評斷或立場表達。 ## Bias, Risks, and Limitations 語言模型的生成內容可能因訓練集的多樣性而帶有偏見、特定立場,或包含與事實不符的言論,請使用者務必在使用過程中仔細確認內容的準確性與中立性。 ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model 要使用 [vLLM Docker image](https://docs.vllm.ai/en/latest/serving/deploying_with_docker.html) 來啟動此模型,您可以按照以下操作: ```bash docker run --runtime nvidia --gpus all \ -v ~/.cache/huggingface:/root/.cache/huggingface \ --env "HUGGING_FACE_HUB_TOKEN=" \ -p 8000:8000 \ --ipc=host \ vllm/vllm-openai:latest \ --model lianghsun/Llama-3.2-Taiwan-3B-Instruct ``` 請注意,如果想要使用不同版本的 checkpoint,請加上 `--revision ` ```bash docker run --runtime nvidia --gpus all \ -v ~/.cache/huggingface:/root/.cache/huggingface \ --env "HUGGING_FACE_HUB_TOKEN=" \ -p 8000:8000 \ --ipc=host \ vllm/vllm-openai:latest \ --model lianghsun/Llama-3.2-Taiwan-3B-Instruct --revision ``` ## Training Details ### Training Data
繁體中文對話資料集 - [lianghsun/tw-legal-nlp](https://huggingface.co/datasets/lianghsun/tw-legal-nlp) - [lianghsun/tw-legal-synthetic-qa](https://huggingface.co/datasets/lianghsun/tw-legal-synthetic-qa) - [lianghsun/tw-law-article-qa](https://huggingface.co/datasets/lianghsun/tw-law-article-qa) - [lianghsun/tw-judgment-qa](https://huggingface.co/datasets/lianghsun/tw-judgment-qa) - [lianghsun/tw-bar-examination-2020-chat](https://huggingface.co/datasets/lianghsun/tw-bar-examination-2020-chat) - [lianghsun/tw-structured-law-article](https://huggingface.co/datasets/lianghsun/tw-structured-law-article) - [lianghsun/tw-judgment-gist-chat](https://huggingface.co/datasets/lianghsun/tw-judgment-gist-chat) - [lianghsun/vulnerability-mitigation-qa-zh_tw](https://huggingface.co/datasets/lianghsun/vulnerability-mitigation-qa-zh_tw) - [lianghsun/tw-legal-qa-chat](https://huggingface.co/datasets/lianghsun/tw-legal-qa-chat) - [lianghsun/reasoning-base-20k-chat](https://huggingface.co/datasets/lianghsun/reasoning-base-20k-chat) - [lianghsun/tw-contract-review-chat](https://huggingface.co/datasets/lianghsun/tw-contract-review-chat) - [lianghsun/tw-legal-methodology-chat](https://huggingface.co/datasets/lianghsun/tw-legal-methodology-chat) - [minyichen/glaive_toolcall_zh_tw](https://huggingface.co/datasets/minyichen/glaive_toolcall_zh_tw)
多國語系對話資料集 - [rombodawg/Everything_Instruct_Multilingual](https://huggingface.co/datasets/rombodawg/Everything_Instruct_Multilingual) - [xzuyn/manythings-translations-alpaca](https://huggingface.co/datasets/xzuyn/manythings-translations-alpaca) - [neural-bridge/rag-dataset-12000](https://huggingface.co/datasets/neural-bridge/rag-dataset-12000)
### Training Procedure #### Preprocessing (WIP) #### Training Hyperparameters
SFT stage for v2024.11.27 **Note:** 以下包含 `v2024.11.22` 和 `v2025.11.25` 的超參數設定 - **learning_rate:** 5e-05 - **min_learning_rate:** 5e-07 - **train_batch_size:** 105 - **seed:** 42 - **distributed_type:** multi-GPU - **num_devices:** 4 - **gradient_accumulation_steps:** 50 - **total_train_batch_size:** 21,000 - **optimizer:** Adam with betas=(0.9,0.999) and epsilon=1e-08 - **lr_scheduler_type:** cosine - **lr_scheduler_warmup_ratio:** 0.01 - **num_epochs:** 5.0 - **global_step:** 590
#### Speeds, Sizes, Times
SFT stage for v2024.11.27 **Note:** 以下包含 `v2024.11.22` 和 `v2025.11.25` 的超參數設定 - **Duration**: 5 days, 16:15:11.17 - **Train runtime**: 490,511.1789 - **Train samples per second**: 25.37 - **Train steps per second**: 0.001 - **Total training FLOPs**: 26,658,386,120,540,160 - **Train loss**: 0.8533
## Evaluation ### Testing Data, Factors & Metrics
Formosa Taiwan Knowledge Bench #### Testing Data [lianghsun/Formosa-bench](https://huggingface.co/datasets/lianghsun/Formosa-bench) #### Factors [More Information Needed] #### Metrics [More Information Needed] ### Results [More Information Needed] #### Summary
lianghsun/tw-legal-benchmark-v1 #### Testing Data - **Dataset:** [lianghsun/tw-legal-benchmark-v1](https://huggingface.co/datasets/lianghsun/tw-legal-benchmark-v1) - **Revision:** 66c3a5f3ff2298f6a1cf23201070b5317bdd1893 #### Factors [More Information Needed] #### Metrics Accuracy ### Results - **Model Revision:** v2024.11.27 | **Subset** | **Split** | **Score** | |--------------|-------|-------| | [lianghsun/tw-legal-benchmark-v1](https://huggingface.co/datasets/lianghsun/tw-legal-benchmark-v1/blob/main/benchmark.csv) | train | 31.1 | #### Summary
tmmlu++ #### Testing Data - **Dataset:** [ikala/tmmluplus](https://huggingface.co/datasets/ikala/tmmluplus) - **Revision:** c0e8ae955997300d5dbf0e382bf0ba5115f85e8c #### Factors [More Information Needed] #### Metrics Accuracy ### Results - **Model Revision:** v2024.11.27 | **Subset** | **Split** | **Score** | |--------------|-------|-------| | [geography_of_taiwan](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/geography_of_taiwan_test.csv) | test | 36.2 | | [dentistry](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/dentistry_test.csv) | test | 33.83 | | [technical](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/technical_test.csv) | test | 35.07 | | [statistics_and_machine_learning](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/statistics_and_machine_learning_test.csv) | test | 28.57 | | [clinical_psychology](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/clinical_psychology_test.csv) | test | 29.6 | | [tve_design](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/tve_design_test.csv) | test | 38.54 | | [three_principles_of_people](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/three_principles_of_people_test.csv) | test | 48.2 | | [introduction_to_law](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/introduction_to_law_test.csv) | test | 29.96 | | [linear_algebra](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/linear_algebra_test.csv) | test | 21.43 | | [agriculture](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/agriculture_test.csv) | test | 24.5 | | [jce_humanities](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/jce_humanities_test.csv) | test | 38.89 | | [music](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/music_test.csv) | test | 25.9 | | [secondary_physics](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/secondary_physics_test.csv) | test | 33.04 | | [physics](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/physics_test.csv) | test | 27.84 | | [advance_chemistry](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/advance_chemistry_test.csv) | test | 27.64 | | [junior_science_exam](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/junior_science_exam_test.csv) | test | 30.05 | | [veterinary_pathology](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/veterinary_pathology_test.csv) | test | 25.09 | | [financial_analysis](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/financial_analysis_test.csv) | test | 25.13 | | [national_protection](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/national_protection_test.csv) | test | 42.65 | | [macroeconomics](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/macroeconomics_test.csv) | test | 26.76 | | [politic_science](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/politic_science_test.csv) | test | 27.44 | | [ttqav2](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/ttqav2_test.csv) | test | 61.06 | | [junior_chinese_exam](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/junior_chinese_exam_test.csv) | test | 30.86 | | [traditional_chinese_medicine_clinical_medicine](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/traditional_chinese_medicine_clinical_medicine_test.csv) | test | 25.9 | | [junior_math_exam](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/junior_math_exam_test.csv) | test | 21.71 | | [auditing](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/auditing_test.csv) | test | 21.82 | | [anti_money_laundering](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/anti_money_laundering_test.csv) | test | 37.31 | | [pharmacology](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/pharmacology_test.csv) | test | 30.68 | | [trust_practice](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/trust_practice_test.csv) | test | 28.18 | | [tve_mathematics](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/tve_mathematics_test.csv) | test | 18.67 | | [human_behavior](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/human_behavior_test.csv) | test | 32.04 | | [pharmacy](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/pharmacy_test.csv) | test | 22.76 | | [tve_chinese_language](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/tve_chinese_language_test.csv) | test | 36.65 | | [optometry](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/optometry_test.csv) | test | 25.11 | | [physical_education](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/physical_education_test.csv) | test | 30.73 | | [organic_chemistry](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/organic_chemistry_test.csv) | test | 35.78 | | [tve_natural_sciences](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/tve_natural_sciences_test.csv) | test | 33.73 | | [education](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/education_test.csv) | test | 37.9 | | [mechanical](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/mechanical_test.csv) | test | 42.37 | | [taiwanese_hokkien](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/taiwanese_hokkien_test.csv) | test | 14.73 | | [nautical_science](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/nautical_science_test.csv) | test | 30.49 | | [business_management](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/business_management_test.csv) | test | 39.57 | | [logic_reasoning](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/logic_reasoning_test.csv) | test | 27.34 | | [marketing_management](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/marketing_management_test.csv) | test | 39.78 | | [economics](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/economics_test.csv) | test | 25.95 | | [basic_medical_science](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/basic_medical_science_test.csv) | test | 28.41 | | [occupational_therapy_for_psychological_disorders](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/occupational_therapy_for_psychological_disorders_test.csv) | test | 35.73 | | [general_principles_of_law](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/general_principles_of_law_test.csv) | test | 31.13 | | [junior_chemistry](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/junior_chemistry_test.csv) | test | 24.88 | | [veterinary_pharmacology](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/veterinary_pharmacology_test.csv) | test | 36.3 | | [educational_psychology](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/educational_psychology_test.csv) | test | 33.52 | | [finance_banking](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/finance_banking_test.csv) | test | 32.59 | | [official_document_management](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/official_document_management_test.csv) | test | 32.43 | | [fire_science](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/fire_science_test.csv) | test | 30.65 | | [junior_social_studies](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/junior_social_studies_test.csv) | test | 47.62 | | [accounting](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/accounting_test.csv) | test | 20.94 | | [engineering_math](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/engineering_math_test.csv) | test | 27.18 | | [education_(profession_level)](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/education_(profession_level)_test.csv) | test | 24.07 | | [chinese_language_and_literature](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/chinese_language_and_literature_test.csv) | test | 27.64 | | [management_accounting](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/management_accounting_test.csv) | test | 24.19 | | [culinary_skills](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/culinary_skills_test.csv) | test | 39.38 | | [administrative_law](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/administrative_law_test.csv) | test | 25.71 | | [insurance_studies](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/insurance_studies_test.csv) | test | 33.42 | | [real_estate](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/real_estate_test.csv) | test | 22.83 | | [computer_science](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/computer_science_test.csv) | test | 31.61 | | [taxation](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/taxation_test.csv) | test | 27.47 | | [trade](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/trade_test.csv) | test | 20.32 | #### Summary 模型版號 `v2024.11.27`,無論是基礎模型([lianghsun/Llama-3.2-Taiwan-3B](https://huggingface.co/lianghsun/Llama-3.2-Taiwan-3B))還是指令微調模型([lianghsun/Llama-3.2-Taiwan-3B-Instruct](https://huggingface.co/lianghsun/Llama-3.2-Taiwan-3B-Instruct)),均未接受過 tmmlu++ 資料集的訓練,以確保測試的公平性。經測試,目前該模型在 tmmlu++ 上表現普遍不佳,未達及格分數,可能需要加入專業領域的資料集來強化基礎模型能力。
## Model Examination [optional] [More Information Needed] ## Environmental Impact - **Hardware Type:** 🚀 - **Hours used:** ⏳⏳⌛ - **Cloud Provider:** [鴻鵠國際股份有限公司](https://www.honghutech.com/) - **Compute Region:** 🇹🇼 - **Carbon Emitted:** ♻️ ## Technical Specifications ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware - **CPU count:** 32 - **Logical CPU count:** 64 - **GPU count:** 4 - **GPU type:** NVIDIA H100 NVL #### Software - **OS version:** Linux-5.15.0-124-generic-x86_64-with-glibc2.35 - **Python version:** 3.12.7 ## Citation ```bibtex @misc{lianghsun2024llama32taiwan3binstruct, author = {Huang, Liang Hsun}, title = {Llama-3.2-Taiwan-3B-Instruct}, year = {2024}, publisher = {Hugging Face}, howpublished = {\url{https://huggingface.co/lianghsun/Llama-3.2-Taiwan-3B-Instruct}}, note = {Accessed: 2024-11-25} } ``` ## Glossary [optional] N/A ## More Information ### Acknowledge ![image/png](https://cdn-uploads.huggingface.co/production/uploads/618dc56cbc345ca7bf95f3cd/28u7rOLoeUgn67clYEKuZ.png) 在此致謝[鴻鵠國際股份有限公司](https://www.honghutech.com/)蔡長明先生無償地贊助算力,以及曾經幫忙過:廖振翔、chweng、Ben、kevin、Maxxchu、Lam 和陳林彥…等朋友們,才能讓這個模型得以訓練完成,提供算力者乃人生父母。 ### Usage 如果你基於此指令模型進行微調,希望能不吝嗇在 **模型卡片(model card)** 裡標註 **基礎模型** 為: ```yaml base_model: lianghsun/Llama-3.2-Taiwan-3B-Instruct ``` 標註和 ❤️ 是給予我們最大的鼓勵,謝謝。😀 ## Model Card Authors [Huang Liang Hsun](https://www.linkedin.com/in/lianghsunhuang) ## Model Card Contact [Huang Liang Hsun](https://www.linkedin.com/in/lianghsunhuang) ### Framework versions - Transformers 4.45.2 - Pytorch 2.4.1+cu121 - Datasets 2.21.0 - Tokenizers 0.20.0