---
license: llama3.2
language:
- zh
- en
- it
- de
- fr
- ja
- ko
base_model:
- meta-llama/Llama-3.2-3B
- lianghsun/Llama-3.2-Taiwan-3B
datasets:
- lianghsun/tw-emergency-medicine-bench
- lianghsun/tw-legal-nlp
- lianghsun/tw-legal-synthetic-qa
- lianghsun/tw-law-article-qa
- lianghsun/tw-judgment-qa
- lianghsun/tw-judgment-gist-chat
- lianghsun/tw-bar-examination-2020-chat
- lianghsun/tw-structured-law-article
- lianghsun/tw-judgment-gist-chat
- lianghsun/tw-contract-review-chat
- lianghsun/reasoning-base-20k-chat
- lianghsun/vulnerability-mitigation-qa-zh_tw
- lianghsun/tw-instruct
- rombodawg/Everything_Instruct_Multilingual
- xzuyn/manythings-translations-alpaca
- neural-bridge/rag-dataset-12000
- minyichen/glaive_toolcall_zh_tw
pipeline_tag: text-generation
library_name: transformers
tags:
- Taiwan
- ROC
- zh-tw
- instruct
- chat
- llama3.2
- SLM
model-index:
- name: Llama-3.2-Taiwan-3B-Instruct
results:
- task:
type: text-generation
name: Single Choice Question
dataset:
type: lianghsun/tw-legal-benchmark-v1
name: tw-legal-benchmark-v1
metrics:
- name: single choice
type: accuracy
value: 31.1
- task:
type: text-generation
name: Single Choice Question
dataset:
type: lianghsun/Formosa-bench
name: (Society) Formosa Taiwan Knowledge Bench
config: society
split: test
revision: v2024.11.27
metrics:
- name: single choice
type: accuracy
value: 60.42
- task:
type: text-generation
name: Single Choice Question
dataset:
type: lianghsun/Formosa-bench
name: (Governmnt) Formosa Taiwan Knowledge Bench
config: governmnt
split: test
revision: v2024.11.27
metrics:
- name: single choice
type: accuracy
value: 44.25
- task:
type: text-generation
name: Single Choice Question
dataset:
type: lianghsun/Formosa-bench
name: (Geography) Formosa Taiwan Knowledge Bench
config: geography
split: test
revision: v2024.11.27
metrics:
- name: single choice
type: accuracy
value: 47.54
- task:
type: text-generation
name: Single Choice Question
dataset:
type: lianghsun/Formosa-bench
name: (History) Formosa Taiwan Knowledge Bench
config: history
split: test
revision: v2024.11.27
metrics:
- name: single choice
type: accuracy
value: 60
- task:
type: question-answering
name: Single Choice Question
dataset:
type: ikala/tmmluplus
name: (geography_of_taiwan) tmmlu++
config: geography_of_taiwan
split: test
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
metrics:
- name: single choice
type: accuracy
value: 36.2
- task:
type: question-answering
name: Single Choice Question
dataset:
type: ikala/tmmluplus
name: (dentistry) tmmlu++
config: dentistry
split: test
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
metrics:
- name: single choice
type: accuracy
value: 33.83
- task:
type: question-answering
name: Single Choice Question
dataset:
type: ikala/tmmluplus
name: (technical) tmmlu++
config: technical
split: test
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
metrics:
- name: single choice
type: accuracy
value: 35.07
- task:
type: question-answering
name: Single Choice Question
dataset:
type: ikala/tmmluplus
name: (statistics_and_machine_learning) tmmlu++
config: statistics_and_machine_learning
split: test
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
metrics:
- name: single choice
type: accuracy
value: 28.57
- task:
type: question-answering
name: Single Choice Question
dataset:
type: ikala/tmmluplus
name: (clinical_psychology) tmmlu++
config: clinical_psychology
split: test
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
metrics:
- name: single choice
type: accuracy
value: 29.6
- task:
type: question-answering
name: Single Choice Question
dataset:
type: ikala/tmmluplus
name: (tve_design) tmmlu++
config: tve_design
split: test
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
metrics:
- name: single choice
type: accuracy
value: 38.54
- task:
type: question-answering
name: Single Choice Question
dataset:
type: ikala/tmmluplus
name: (three_principles_of_people) tmmlu++
config: three_principles_of_people
split: test
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
metrics:
- name: single choice
type: accuracy
value: 48.2
- task:
type: question-answering
name: Single Choice Question
dataset:
type: ikala/tmmluplus
name: (introduction_to_law) tmmlu++
config: introduction_to_law
split: test
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
metrics:
- name: single choice
type: accuracy
value: 29.96
- task:
type: question-answering
name: Single Choice Question
dataset:
type: ikala/tmmluplus
name: (linear_algebra) tmmlu++
config: linear_algebra
split: test
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
metrics:
- name: single choice
type: accuracy
value: 21.43
- task:
type: question-answering
name: Single Choice Question
dataset:
type: ikala/tmmluplus
name: (agriculture) tmmlu++
config: agriculture
split: test
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
metrics:
- name: single choice
type: accuracy
value: 24.5
- task:
type: question-answering
name: Single Choice Question
dataset:
type: ikala/tmmluplus
name: (jce_humanities) tmmlu++
config: jce_humanities
split: test
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
metrics:
- name: single choice
type: accuracy
value: 38.89
- task:
type: question-answering
name: Single Choice Question
dataset:
type: ikala/tmmluplus
name: (music) tmmlu++
config: music
split: test
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
metrics:
- name: single choice
type: accuracy
value: 25.9
- task:
type: question-answering
name: Single Choice Question
dataset:
type: ikala/tmmluplus
name: (secondary_physics) tmmlu++
config: secondary_physics
split: test
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
metrics:
- name: single choice
type: accuracy
value: 33.04
- task:
type: question-answering
name: Single Choice Question
dataset:
type: ikala/tmmluplus
name: (physics) tmmlu++
config: physics
split: test
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
metrics:
- name: single choice
type: accuracy
value: 27.84
- task:
type: question-answering
name: Single Choice Question
dataset:
type: ikala/tmmluplus
name: (advance_chemistry) tmmlu++
config: advance_chemistry
split: test
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
metrics:
- name: single choice
type: accuracy
value: 27.64
- task:
type: question-answering
name: Single Choice Question
dataset:
type: ikala/tmmluplus
name: (junior_science_exam) tmmlu++
config: junior_science_exam
split: test
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
metrics:
- name: single choice
type: accuracy
value: 30.05
- task:
type: question-answering
name: Single Choice Question
dataset:
type: ikala/tmmluplus
name: (veterinary_pathology) tmmlu++
config: veterinary_pathology
split: test
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
metrics:
- name: single choice
type: accuracy
value: 25.09
- task:
type: question-answering
name: Single Choice Question
dataset:
type: ikala/tmmluplus
name: (financial_analysis) tmmlu++
config: financial_analysis
split: test
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
metrics:
- name: single choice
type: accuracy
value: 25.13
- task:
type: question-answering
name: Single Choice Question
dataset:
type: ikala/tmmluplus
name: (national_protection) tmmlu++
config: national_protection
split: test
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
metrics:
- name: single choice
type: accuracy
value: 42.65
- task:
type: question-answering
name: Single Choice Question
dataset:
type: ikala/tmmluplus
name: (macroeconomics) tmmlu++
config: macroeconomics
split: test
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
metrics:
- name: single choice
type: accuracy
value: 26.76
- task:
type: question-answering
name: Single Choice Question
dataset:
type: ikala/tmmluplus
name: (politic_science) tmmlu++
config: politic_science
split: test
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
metrics:
- name: single choice
type: accuracy
value: 27.44
- task:
type: question-answering
name: Single Choice Question
dataset:
type: ikala/tmmluplus
name: (ttqav2) tmmlu++
config: ttqav2
split: test
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
metrics:
- name: single choice
type: accuracy
value: 61.06
- task:
type: question-answering
name: Single Choice Question
dataset:
type: ikala/tmmluplus
name: (junior_chinese_exam) tmmlu++
config: junior_chinese_exam
split: test
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
metrics:
- name: single choice
type: accuracy
value: 30.86
- task:
type: question-answering
name: Single Choice Question
dataset:
type: ikala/tmmluplus
name: (traditional_chinese_medicine_clinical_medicine) tmmlu++
config: traditional_chinese_medicine_clinical_medicine
split: test
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
metrics:
- name: single choice
type: accuracy
value: 25.9
- task:
type: question-answering
name: Single Choice Question
dataset:
type: ikala/tmmluplus
name: (junior_math_exam) tmmlu++
config: junior_math_exam
split: test
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
metrics:
- name: single choice
type: accuracy
value: 21.71
- task:
type: question-answering
name: Single Choice Question
dataset:
type: ikala/tmmluplus
name: (auditing) tmmlu++
config: auditing
split: test
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
metrics:
- name: single choice
type: accuracy
value: 21.82
- task:
type: question-answering
name: Single Choice Question
dataset:
type: ikala/tmmluplus
name: (anti_money_laundering) tmmlu++
config: anti_money_laundering
split: test
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
metrics:
- name: single choice
type: accuracy
value: 37.31
- task:
type: question-answering
name: Single Choice Question
dataset:
type: ikala/tmmluplus
name: (pharmacology) tmmlu++
config: pharmacology
split: test
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
metrics:
- name: single choice
type: accuracy
value: 30.68
- task:
type: question-answering
name: Single Choice Question
dataset:
type: ikala/tmmluplus
name: (trust_practice) tmmlu++
config: trust_practice
split: test
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
metrics:
- name: single choice
type: accuracy
value: 28.18
- task:
type: question-answering
name: Single Choice Question
dataset:
type: ikala/tmmluplus
name: (tve_mathematics) tmmlu++
config: tve_mathematics
split: test
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
metrics:
- name: single choice
type: accuracy
value: 18.67
- task:
type: question-answering
name: Single Choice Question
dataset:
type: ikala/tmmluplus
name: (human_behavior) tmmlu++
config: human_behavior
split: test
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
metrics:
- name: single choice
type: accuracy
value: 32.04
- task:
type: question-answering
name: Single Choice Question
dataset:
type: ikala/tmmluplus
name: (pharmacy) tmmlu++
config: pharmacy
split: test
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
metrics:
- name: single choice
type: accuracy
value: 22.76
- task:
type: question-answering
name: Single Choice Question
dataset:
type: ikala/tmmluplus
name: (tve_chinese_language) tmmlu++
config: tve_chinese_language
split: test
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
metrics:
- name: single choice
type: accuracy
value: 36.65
- task:
type: question-answering
name: Single Choice Question
dataset:
type: ikala/tmmluplus
name: (optometry) tmmlu++
config: optometry
split: test
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
metrics:
- name: single choice
type: accuracy
value: 25.11
- task:
type: question-answering
name: Single Choice Question
dataset:
type: ikala/tmmluplus
name: (physical_education) tmmlu++
config: physical_education
split: test
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
metrics:
- name: single choice
type: accuracy
value: 30.73
- task:
type: question-answering
name: Single Choice Question
dataset:
type: ikala/tmmluplus
name: (organic_chemistry) tmmlu++
config: organic_chemistry
split: test
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
metrics:
- name: single choice
type: accuracy
value: 35.78
- task:
type: question-answering
name: Single Choice Question
dataset:
type: ikala/tmmluplus
name: (tve_natural_sciences) tmmlu++
config: tve_natural_sciences
split: test
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
metrics:
- name: single choice
type: accuracy
value: 33.73
- task:
type: question-answering
name: Single Choice Question
dataset:
type: ikala/tmmluplus
name: (education) tmmlu++
config: education
split: test
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
metrics:
- name: single choice
type: accuracy
value: 37.9
- task:
type: question-answering
name: Single Choice Question
dataset:
type: ikala/tmmluplus
name: (mechanical) tmmlu++
config: mechanical
split: test
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
metrics:
- name: single choice
type: accuracy
value: 42.37
- task:
type: question-answering
name: Single Choice Question
dataset:
type: ikala/tmmluplus
name: (taiwanese_hokkien) tmmlu++
config: taiwanese_hokkien
split: test
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
metrics:
- name: single choice
type: accuracy
value: 14.73
- task:
type: question-answering
name: Single Choice Question
dataset:
type: ikala/tmmluplus
name: (nautical_science) tmmlu++
config: nautical_science
split: test
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
metrics:
- name: single choice
type: accuracy
value: 30.49
- task:
type: question-answering
name: Single Choice Question
dataset:
type: ikala/tmmluplus
name: (business_management) tmmlu++
config: business_management
split: test
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
metrics:
- name: single choice
type: accuracy
value: 39.57
- task:
type: question-answering
name: Single Choice Question
dataset:
type: ikala/tmmluplus
name: (logic_reasoning) tmmlu++
config: logic_reasoning
split: test
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
metrics:
- name: single choice
type: accuracy
value: 27.34
- task:
type: question-answering
name: Single Choice Question
dataset:
type: ikala/tmmluplus
name: (marketing_management) tmmlu++
config: marketing_management
split: test
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
metrics:
- name: single choice
type: accuracy
value: 39.78
- task:
type: question-answering
name: Single Choice Question
dataset:
type: ikala/tmmluplus
name: (economics) tmmlu++
config: economics
split: test
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
metrics:
- name: single choice
type: accuracy
value: 25.95
- task:
type: question-answering
name: Single Choice Question
dataset:
type: ikala/tmmluplus
name: (basic_medical_science) tmmlu++
config: basic_medical_science
split: test
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
metrics:
- name: single choice
type: accuracy
value: 28.41
- task:
type: question-answering
name: Single Choice Question
dataset:
type: ikala/tmmluplus
name: (occupational_therapy_for_psychological_disorders) tmmlu++
config: occupational_therapy_for_psychological_disorders
split: test
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
metrics:
- name: single choice
type: accuracy
value: 35.73
- task:
type: question-answering
name: Single Choice Question
dataset:
type: ikala/tmmluplus
name: (general_principles_of_law) tmmlu++
config: general_principles_of_law
split: test
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
metrics:
- name: single choice
type: accuracy
value: 31.13
- task:
type: question-answering
name: Single Choice Question
dataset:
type: ikala/tmmluplus
name: (junior_chemistry) tmmlu++
config: junior_chemistry
split: test
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
metrics:
- name: single choice
type: accuracy
value: 24.88
- task:
type: question-answering
name: Single Choice Question
dataset:
type: ikala/tmmluplus
name: (veterinary_pharmacology) tmmlu++
config: veterinary_pharmacology
split: test
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
metrics:
- name: single choice
type: accuracy
value: 36.3
- task:
type: question-answering
name: Single Choice Question
dataset:
type: ikala/tmmluplus
name: (educational_psychology) tmmlu++
config: educational_psychology
split: test
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
metrics:
- name: single choice
type: accuracy
value: 33.52
- task:
type: question-answering
name: Single Choice Question
dataset:
type: ikala/tmmluplus
name: (finance_banking) tmmlu++
config: finance_banking
split: test
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
metrics:
- name: single choice
type: accuracy
value: 32.59
- task:
type: question-answering
name: Single Choice Question
dataset:
type: ikala/tmmluplus
name: (official_document_management) tmmlu++
config: official_document_management
split: test
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
metrics:
- name: single choice
type: accuracy
value: 32.43
- task:
type: question-answering
name: Single Choice Question
dataset:
type: ikala/tmmluplus
name: (fire_science) tmmlu++
config: fire_science
split: test
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
metrics:
- name: single choice
type: accuracy
value: 30.65
- task:
type: question-answering
name: Single Choice Question
dataset:
type: ikala/tmmluplus
name: (junior_social_studies) tmmlu++
config: junior_social_studies
split: test
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
metrics:
- name: single choice
type: accuracy
value: 47.62
- task:
type: question-answering
name: Single Choice Question
dataset:
type: ikala/tmmluplus
name: (accounting) tmmlu++
config: accounting
split: test
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
metrics:
- name: single choice
type: accuracy
value: 20.94
- task:
type: question-answering
name: Single Choice Question
dataset:
type: ikala/tmmluplus
name: (engineering_math) tmmlu++
config: engineering_math
split: test
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
metrics:
- name: single choice
type: accuracy
value: 27.18
- task:
type: question-answering
name: Single Choice Question
dataset:
type: ikala/tmmluplus
name: (education_(profession_level)) tmmlu++
config: education_(profession_level)
split: test
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
metrics:
- name: single choice
type: accuracy
value: 24.07
- task:
type: question-answering
name: Single Choice Question
dataset:
type: ikala/tmmluplus
name: (chinese_language_and_literature) tmmlu++
config: chinese_language_and_literature
split: test
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
metrics:
- name: single choice
type: accuracy
value: 27.64
- task:
type: question-answering
name: Single Choice Question
dataset:
type: ikala/tmmluplus
name: (management_accounting) tmmlu++
config: management_accounting
split: test
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
metrics:
- name: single choice
type: accuracy
value: 24.19
- task:
type: question-answering
name: Single Choice Question
dataset:
type: ikala/tmmluplus
name: (culinary_skills) tmmlu++
config: culinary_skills
split: test
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
metrics:
- name: single choice
type: accuracy
value: 39.38
- task:
type: question-answering
name: Single Choice Question
dataset:
type: ikala/tmmluplus
name: (administrative_law) tmmlu++
config: administrative_law
split: test
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
metrics:
- name: single choice
type: accuracy
value: 25.71
- task:
type: question-answering
name: Single Choice Question
dataset:
type: ikala/tmmluplus
name: (insurance_studies) tmmlu++
config: insurance_studies
split: test
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
metrics:
- name: single choice
type: accuracy
value: 33.42
- task:
type: question-answering
name: Single Choice Question
dataset:
type: ikala/tmmluplus
name: (real_estate) tmmlu++
config: real_estate
split: test
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
metrics:
- name: single choice
type: accuracy
value: 22.83
- task:
type: question-answering
name: Single Choice Question
dataset:
type: ikala/tmmluplus
name: (computer_science) tmmlu++
config: computer_science
split: test
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
metrics:
- name: single choice
type: accuracy
value: 31.61
- task:
type: question-answering
name: Single Choice Question
dataset:
type: ikala/tmmluplus
name: (taxation) tmmlu++
config: taxation
split: test
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
metrics:
- name: single choice
type: accuracy
value: 27.47
- task:
type: question-answering
name: Single Choice Question
dataset:
type: ikala/tmmluplus
name: (trade) tmmlu++
config: trade
split: test
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
metrics:
- name: single choice
type: accuracy
value: 20.32
widget:
- text: 中華民國憲法第一條
metrics:
- accuracy
---
[![QuantFactory Banner](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ)](https://hf.co/QuantFactory)
# QuantFactory/Llama-3.2-Taiwan-3B-Instruct-GGUF
This is quantized version of [lianghsun/Llama-3.2-Taiwan-3B-Instruct](https://huggingface.co/lianghsun/Llama-3.2-Taiwan-3B-Instruct) created using llama.cpp
# Original Model Card
# Model Card for lianghsun/Llama-3.2-Taiwan-3B-Instruct
[Discord]
![image/png](https://cdn-uploads.huggingface.co/production/uploads/618dc56cbc345ca7bf95f3cd/v_cfMxTtVE6_eh0rzcy5L.png)
*圖像生成來自 [OpenArt](https://openart.ai/home):An anime-style 🦙 standing proudly atop the summit of Taiwan’s [Yushan (Jade Mountain)](https://zh.wikipedia.org/wiki/%E7%8E%89%E5%B1%B1), gazing forward.*
採用 [lianghsun/Llama-3.2-Taiwan-3B](https://huggingface.co/lianghsun/Llama-3.2-Taiwan-3B) 為[基礎模型(foundation model)](https://en.wikipedia.org/wiki/Foundation_model),使用大量[中華民國台灣](https://zh.wikipedia.org/zh-tw/%E8%87%BA%E7%81%A3)的繁體中文對話集和多國語言對話集進行模型[指令微調(instruction fine-tuning)](https://www.ibm.com/topics/instruction-tuning)和多輪迭代[直接偏好優化(direct preference optimization, DPO)](https://arxiv.org/abs/2305.18290),旨在訓練出具有中華民國台灣知識及風格的[小語言模型(small langugae model, SLM)](https://www.ibm.com/think/topics/small-language-models)之對話模型。
Model Change Log
| Update Date | Model Version | Key Changes |
|--------------|-----------------------|-------------------------------------|
| 2025/01/01 | v2025.01.01 | Fine-tuning is based on the [foundation model](https://huggingface.co/lianghsun/Llama-3.2-Taiwan-3B) version v2024.12.28, and it uses self-prepared instruction datasets for this round of fine-tuning. |
| 2024/12/13 | v2024.12.13 | Completed 1st round DPO training (10/10 epochs). Preparing for next round DPO training. |
| 2024/11/27 | v2024.11.27 | Completed SFT training (5/5 epochs). Preparing for multi-round DPO training. |
| 2024/11/25 | v2024.11.25 | Updated model version to v2024.11.25, training progressed to (3/5) epochs. Still in SFT stage, DPO training remains pending. |
| 2024/11/22 | v2024.11.22 | Initial upload: Model version v2024.11.22, training completed up to (1/5) epochs. Currently trained only on SFT, DPO training not yet performed. |
## Model Details
### Model Description
- **Developed by:** [Huang Liang Hsun](https://www.linkedin.com/in/lianghsunhuang)
- **Model type:** LlamaForCausalLM
- **Language(s) (NLP):** Tranditional Chinese (zh-tw), English
- **License:** [llama3.2](https://huggingface.co/meta-llama/Llama-3.2-1B/blob/main/LICENSE.txt)
- **Fine-tuned from model:** [lianghsun/Llama-3.2-Taiwan-3B](https://huggingface.co/lianghsun/Llama-3.2-Taiwan-3B)
### Model Sources
- **Repository:** [lianghsun/Llama-3.2-Taiwan-3B](https://huggingface.co/lianghsun/Llama-3.2-Taiwan-3B)
- **Paper:** (WIP, show me the time)
- **Playground:** [🦉 Tawian SmolLM Chat](https://huggingface.co/spaces/lianghsun/tw-smol-chat) 👈🏼 來玩看看 😻
- **Demo:**
```yaml
user: 請介紹台灣
assistant: 台灣,位於亞洲東部,地處太平洋與菲律賓海之間,面積約36,000平方公里,人口約2,300萬,是民主自由的國家,經濟實力強勁,擁有世界第10大經濟體。台灣以美食、文化、自然美景著稱,還有豐富的歷史與傳統,吸引全球遊客。台灣語為官方語言,但中文也廣為使用,英語也常用於國際交流。台灣政治多元,執政黨為民進黨,台灣是全球科技產業的重鎮,擁有先進的製造業與服務業。台灣氣候溫暖潮濕,四季分明,夏季炎熱,冬季涼爽,雨季則在5月至10月。台灣的美食以小吃為主,如滷肉飯、珍珠
```
## Uses
### Direct Use
本模型已經具備有繁體中文對話能力,使用者可以直接部署推論端點使用。
### Downstream Use
若需強化模型在特定領域的知識,可透過微調進一步提升其性能與專業能力。
### Out-of-Scope Use
本模型旨在提供資訊,不參與任何政治或法律問題的評斷或立場表達。
## Bias, Risks, and Limitations
語言模型的生成內容可能因訓練集的多樣性而帶有偏見、特定立場,或包含與事實不符的言論,請使用者務必在使用過程中仔細確認內容的準確性與中立性。
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
要使用 [vLLM Docker image](https://docs.vllm.ai/en/latest/serving/deploying_with_docker.html) 來啟動此模型,您可以按照以下操作:
```bash
docker run --runtime nvidia --gpus all \
-v ~/.cache/huggingface:/root/.cache/huggingface \
--env "HUGGING_FACE_HUB_TOKEN=" \
-p 8000:8000 \
--ipc=host \
vllm/vllm-openai:latest \
--model lianghsun/Llama-3.2-Taiwan-3B-Instruct
```
請注意,如果想要使用不同版本的 checkpoint,請加上 `--revision `
```bash
docker run --runtime nvidia --gpus all \
-v ~/.cache/huggingface:/root/.cache/huggingface \
--env "HUGGING_FACE_HUB_TOKEN=" \
-p 8000:8000 \
--ipc=host \
vllm/vllm-openai:latest \
--model lianghsun/Llama-3.2-Taiwan-3B-Instruct --revision
```
## Training Details
### Training Data
繁體中文對話資料集
- [lianghsun/tw-legal-nlp](https://huggingface.co/datasets/lianghsun/tw-legal-nlp)
- [lianghsun/tw-legal-synthetic-qa](https://huggingface.co/datasets/lianghsun/tw-legal-synthetic-qa)
- [lianghsun/tw-law-article-qa](https://huggingface.co/datasets/lianghsun/tw-law-article-qa)
- [lianghsun/tw-judgment-qa](https://huggingface.co/datasets/lianghsun/tw-judgment-qa)
- [lianghsun/tw-bar-examination-2020-chat](https://huggingface.co/datasets/lianghsun/tw-bar-examination-2020-chat)
- [lianghsun/tw-structured-law-article](https://huggingface.co/datasets/lianghsun/tw-structured-law-article)
- [lianghsun/tw-judgment-gist-chat](https://huggingface.co/datasets/lianghsun/tw-judgment-gist-chat)
- [lianghsun/vulnerability-mitigation-qa-zh_tw](https://huggingface.co/datasets/lianghsun/vulnerability-mitigation-qa-zh_tw)
- [lianghsun/tw-legal-qa-chat](https://huggingface.co/datasets/lianghsun/tw-legal-qa-chat)
- [lianghsun/reasoning-base-20k-chat](https://huggingface.co/datasets/lianghsun/reasoning-base-20k-chat)
- [lianghsun/tw-contract-review-chat](https://huggingface.co/datasets/lianghsun/tw-contract-review-chat)
- [lianghsun/tw-legal-methodology-chat](https://huggingface.co/datasets/lianghsun/tw-legal-methodology-chat)
- [minyichen/glaive_toolcall_zh_tw](https://huggingface.co/datasets/minyichen/glaive_toolcall_zh_tw)
多國語系對話資料集
- [rombodawg/Everything_Instruct_Multilingual](https://huggingface.co/datasets/rombodawg/Everything_Instruct_Multilingual)
- [xzuyn/manythings-translations-alpaca](https://huggingface.co/datasets/xzuyn/manythings-translations-alpaca)
- [neural-bridge/rag-dataset-12000](https://huggingface.co/datasets/neural-bridge/rag-dataset-12000)
### Training Procedure
#### Preprocessing
(WIP)
#### Training Hyperparameters
SFT stage for v2024.11.27
**Note:** 以下包含 `v2024.11.22` 和 `v2025.11.25` 的超參數設定
- **learning_rate:** 5e-05
- **min_learning_rate:** 5e-07
- **train_batch_size:** 105
- **seed:** 42
- **distributed_type:** multi-GPU
- **num_devices:** 4
- **gradient_accumulation_steps:** 50
- **total_train_batch_size:** 21,000
- **optimizer:** Adam with betas=(0.9,0.999) and epsilon=1e-08
- **lr_scheduler_type:** cosine
- **lr_scheduler_warmup_ratio:** 0.01
- **num_epochs:** 5.0
- **global_step:** 590
#### Speeds, Sizes, Times
SFT stage for v2024.11.27
**Note:** 以下包含 `v2024.11.22` 和 `v2025.11.25` 的超參數設定
- **Duration**: 5 days, 16:15:11.17
- **Train runtime**: 490,511.1789
- **Train samples per second**: 25.37
- **Train steps per second**: 0.001
- **Total training FLOPs**: 26,658,386,120,540,160
- **Train loss**: 0.8533
## Evaluation
### Testing Data, Factors & Metrics
Formosa Taiwan Knowledge Bench
#### Testing Data
[lianghsun/Formosa-bench](https://huggingface.co/datasets/lianghsun/Formosa-bench)
#### Factors
[More Information Needed]
#### Metrics
[More Information Needed]
### Results
[More Information Needed]
#### Summary
lianghsun/tw-legal-benchmark-v1
#### Testing Data
- **Dataset:** [lianghsun/tw-legal-benchmark-v1](https://huggingface.co/datasets/lianghsun/tw-legal-benchmark-v1)
- **Revision:** 66c3a5f3ff2298f6a1cf23201070b5317bdd1893
#### Factors
[More Information Needed]
#### Metrics
Accuracy
### Results
- **Model Revision:** v2024.11.27
| **Subset** | **Split** | **Score** |
|--------------|-------|-------|
| [lianghsun/tw-legal-benchmark-v1](https://huggingface.co/datasets/lianghsun/tw-legal-benchmark-v1/blob/main/benchmark.csv) | train | 31.1 |
#### Summary
tmmlu++
#### Testing Data
- **Dataset:** [ikala/tmmluplus](https://huggingface.co/datasets/ikala/tmmluplus)
- **Revision:** c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
#### Factors
[More Information Needed]
#### Metrics
Accuracy
### Results
- **Model Revision:** v2024.11.27
| **Subset** | **Split** | **Score** |
|--------------|-------|-------|
| [geography_of_taiwan](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/geography_of_taiwan_test.csv) | test | 36.2 |
| [dentistry](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/dentistry_test.csv) | test | 33.83 |
| [technical](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/technical_test.csv) | test | 35.07 |
| [statistics_and_machine_learning](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/statistics_and_machine_learning_test.csv) | test | 28.57 |
| [clinical_psychology](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/clinical_psychology_test.csv) | test | 29.6 |
| [tve_design](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/tve_design_test.csv) | test | 38.54 |
| [three_principles_of_people](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/three_principles_of_people_test.csv) | test | 48.2 |
| [introduction_to_law](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/introduction_to_law_test.csv) | test | 29.96 |
| [linear_algebra](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/linear_algebra_test.csv) | test | 21.43 |
| [agriculture](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/agriculture_test.csv) | test | 24.5 |
| [jce_humanities](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/jce_humanities_test.csv) | test | 38.89 |
| [music](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/music_test.csv) | test | 25.9 |
| [secondary_physics](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/secondary_physics_test.csv) | test | 33.04 |
| [physics](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/physics_test.csv) | test | 27.84 |
| [advance_chemistry](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/advance_chemistry_test.csv) | test | 27.64 |
| [junior_science_exam](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/junior_science_exam_test.csv) | test | 30.05 |
| [veterinary_pathology](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/veterinary_pathology_test.csv) | test | 25.09 |
| [financial_analysis](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/financial_analysis_test.csv) | test | 25.13 |
| [national_protection](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/national_protection_test.csv) | test | 42.65 |
| [macroeconomics](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/macroeconomics_test.csv) | test | 26.76 |
| [politic_science](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/politic_science_test.csv) | test | 27.44 |
| [ttqav2](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/ttqav2_test.csv) | test | 61.06 |
| [junior_chinese_exam](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/junior_chinese_exam_test.csv) | test | 30.86 |
| [traditional_chinese_medicine_clinical_medicine](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/traditional_chinese_medicine_clinical_medicine_test.csv) | test | 25.9 |
| [junior_math_exam](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/junior_math_exam_test.csv) | test | 21.71 |
| [auditing](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/auditing_test.csv) | test | 21.82 |
| [anti_money_laundering](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/anti_money_laundering_test.csv) | test | 37.31 |
| [pharmacology](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/pharmacology_test.csv) | test | 30.68 |
| [trust_practice](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/trust_practice_test.csv) | test | 28.18 |
| [tve_mathematics](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/tve_mathematics_test.csv) | test | 18.67 |
| [human_behavior](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/human_behavior_test.csv) | test | 32.04 |
| [pharmacy](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/pharmacy_test.csv) | test | 22.76 |
| [tve_chinese_language](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/tve_chinese_language_test.csv) | test | 36.65 |
| [optometry](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/optometry_test.csv) | test | 25.11 |
| [physical_education](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/physical_education_test.csv) | test | 30.73 |
| [organic_chemistry](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/organic_chemistry_test.csv) | test | 35.78 |
| [tve_natural_sciences](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/tve_natural_sciences_test.csv) | test | 33.73 |
| [education](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/education_test.csv) | test | 37.9 |
| [mechanical](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/mechanical_test.csv) | test | 42.37 |
| [taiwanese_hokkien](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/taiwanese_hokkien_test.csv) | test | 14.73 |
| [nautical_science](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/nautical_science_test.csv) | test | 30.49 |
| [business_management](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/business_management_test.csv) | test | 39.57 |
| [logic_reasoning](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/logic_reasoning_test.csv) | test | 27.34 |
| [marketing_management](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/marketing_management_test.csv) | test | 39.78 |
| [economics](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/economics_test.csv) | test | 25.95 |
| [basic_medical_science](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/basic_medical_science_test.csv) | test | 28.41 |
| [occupational_therapy_for_psychological_disorders](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/occupational_therapy_for_psychological_disorders_test.csv) | test | 35.73 |
| [general_principles_of_law](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/general_principles_of_law_test.csv) | test | 31.13 |
| [junior_chemistry](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/junior_chemistry_test.csv) | test | 24.88 |
| [veterinary_pharmacology](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/veterinary_pharmacology_test.csv) | test | 36.3 |
| [educational_psychology](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/educational_psychology_test.csv) | test | 33.52 |
| [finance_banking](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/finance_banking_test.csv) | test | 32.59 |
| [official_document_management](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/official_document_management_test.csv) | test | 32.43 |
| [fire_science](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/fire_science_test.csv) | test | 30.65 |
| [junior_social_studies](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/junior_social_studies_test.csv) | test | 47.62 |
| [accounting](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/accounting_test.csv) | test | 20.94 |
| [engineering_math](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/engineering_math_test.csv) | test | 27.18 |
| [education_(profession_level)](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/education_(profession_level)_test.csv) | test | 24.07 |
| [chinese_language_and_literature](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/chinese_language_and_literature_test.csv) | test | 27.64 |
| [management_accounting](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/management_accounting_test.csv) | test | 24.19 |
| [culinary_skills](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/culinary_skills_test.csv) | test | 39.38 |
| [administrative_law](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/administrative_law_test.csv) | test | 25.71 |
| [insurance_studies](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/insurance_studies_test.csv) | test | 33.42 |
| [real_estate](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/real_estate_test.csv) | test | 22.83 |
| [computer_science](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/computer_science_test.csv) | test | 31.61 |
| [taxation](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/taxation_test.csv) | test | 27.47 |
| [trade](https://huggingface.co/datasets/ikala/tmmluplus/blob/main/data/trade_test.csv) | test | 20.32 |
#### Summary
模型版號 `v2024.11.27`,無論是基礎模型([lianghsun/Llama-3.2-Taiwan-3B](https://huggingface.co/lianghsun/Llama-3.2-Taiwan-3B))還是指令微調模型([lianghsun/Llama-3.2-Taiwan-3B-Instruct](https://huggingface.co/lianghsun/Llama-3.2-Taiwan-3B-Instruct)),均未接受過 tmmlu++ 資料集的訓練,以確保測試的公平性。經測試,目前該模型在 tmmlu++ 上表現普遍不佳,未達及格分數,可能需要加入專業領域的資料集來強化基礎模型能力。
## Model Examination [optional]
[More Information Needed]
## Environmental Impact
- **Hardware Type:** 🚀
- **Hours used:** ⏳⏳⌛
- **Cloud Provider:** [鴻鵠國際股份有限公司](https://www.honghutech.com/)
- **Compute Region:** 🇹🇼
- **Carbon Emitted:** ♻️
## Technical Specifications
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
- **CPU count:** 32
- **Logical CPU count:** 64
- **GPU count:** 4
- **GPU type:** NVIDIA H100 NVL
#### Software
- **OS version:** Linux-5.15.0-124-generic-x86_64-with-glibc2.35
- **Python version:** 3.12.7
## Citation
```bibtex
@misc{lianghsun2024llama32taiwan3binstruct,
author = {Huang, Liang Hsun},
title = {Llama-3.2-Taiwan-3B-Instruct},
year = {2024},
publisher = {Hugging Face},
howpublished = {\url{https://huggingface.co/lianghsun/Llama-3.2-Taiwan-3B-Instruct}},
note = {Accessed: 2024-11-25}
}
```
## Glossary [optional]
N/A
## More Information
### Acknowledge
![image/png](https://cdn-uploads.huggingface.co/production/uploads/618dc56cbc345ca7bf95f3cd/28u7rOLoeUgn67clYEKuZ.png)
在此致謝[鴻鵠國際股份有限公司](https://www.honghutech.com/)蔡長明先生無償地贊助算力,以及曾經幫忙過:廖振翔、chweng、Ben、kevin、Maxxchu、Lam 和陳林彥…等朋友們,才能讓這個模型得以訓練完成,提供算力者乃人生父母。
### Usage
如果你基於此指令模型進行微調,希望能不吝嗇在 **模型卡片(model card)** 裡標註 **基礎模型** 為:
```yaml
base_model: lianghsun/Llama-3.2-Taiwan-3B-Instruct
```
標註和 ❤️ 是給予我們最大的鼓勵,謝謝。😀
## Model Card Authors
[Huang Liang Hsun](https://www.linkedin.com/in/lianghsunhuang)
## Model Card Contact
[Huang Liang Hsun](https://www.linkedin.com/in/lianghsunhuang)
### Framework versions
- Transformers 4.45.2
- Pytorch 2.4.1+cu121
- Datasets 2.21.0
- Tokenizers 0.20.0