aashish1904
commited on
Commit
β’
d8b23ea
1
Parent(s):
ef32030
Upload README.md with huggingface_hub
Browse files
README.md
ADDED
@@ -0,0 +1,152 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
---
|
3 |
+
|
4 |
+
language:
|
5 |
+
- en
|
6 |
+
- ko
|
7 |
+
license: cc-by-nc-4.0
|
8 |
+
tags:
|
9 |
+
- dnotitia
|
10 |
+
- nlp
|
11 |
+
- llm
|
12 |
+
- slm
|
13 |
+
- conversation
|
14 |
+
- chat
|
15 |
+
base_model:
|
16 |
+
- meta-llama/Meta-Llama-3.1-8B
|
17 |
+
library_name: transformers
|
18 |
+
pipeline_tag: text-generation
|
19 |
+
|
20 |
+
---
|
21 |
+
|
22 |
+
[![QuantFactory Banner](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ)](https://hf.co/QuantFactory)
|
23 |
+
|
24 |
+
|
25 |
+
# QuantFactory/Llama-DNA-1.0-8B-Instruct-GGUF
|
26 |
+
This is quantized version of [dnotitia/Llama-DNA-1.0-8B-Instruct](https://huggingface.co/dnotitia/Llama-DNA-1.0-8B-Instruct) created using llama.cpp
|
27 |
+
|
28 |
+
# Original Model Card
|
29 |
+
|
30 |
+
|
31 |
+
# DNA 1.0 8B Instruct
|
32 |
+
|
33 |
+
<p align="center">
|
34 |
+
<img src="assets/dna-logo.png" width="400" style="margin: 40px auto;">
|
35 |
+
</p>
|
36 |
+
|
37 |
+
**DNA 1.0 8B Instruct** is a <u>state-of-the-art (**SOTA**)</u> bilingual language model based on Llama architecture, specifically optimized for Korean language understanding and generation, while also maintaining strong English capabilities. The model was developed through a sophisticated process involving model merging via spherical linear interpolation (**SLERP**) with Llama 3.1 8B Instruct, and underwent knowledge distillation (**KD**) using Llama 3.1 405B as the teacher model. It was extensively trained through continual pre-training (**CPT**) with a high-quality Korean dataset. The training pipeline was completed with supervised fine-tuning (**SFT**) and direct preference optimization (**DPO**) to align with human preferences and enhance instruction-following abilities.
|
38 |
+
|
39 |
+
DNA 1.0 8B Instruct was fine-tuned on approximately 10B tokens of carefully curated data and has undergone extensive instruction tuning to enhance its ability to follow complex instructions and engage in natural conversations.
|
40 |
+
|
41 |
+
- **Developed by:** Dnotitia Inc.
|
42 |
+
- **Supported Languages:** Korean, English
|
43 |
+
- **Vocab Size:** 128,256
|
44 |
+
- **Context Length:** 131,072 tokens (128k)
|
45 |
+
- **License:** CC BY-NC 4.0
|
46 |
+
|
47 |
+
<div style="padding: 2px 8px; background-color: hsl(240, 100%, 50%, 0.1); border-radius: 5px">
|
48 |
+
<p><strong>NOTICE (Korean):</strong></p>
|
49 |
+
<p>λ³Έ λͺ¨λΈμ μμ
μ λͺ©μ μΌλ‘ νμ©νμ€ μ μμ΅λλ€. μμ
μ μ΄μ©μ μνμλ κ²½μ°, <a href="https://www.dnotitia.com/contact/post-form">Contact us</a>λ₯Ό ν΅ν΄ λ¬Έμν΄ μ£ΌμκΈ° λ°λλλ€. κ°λ¨ν νμ μ μ°¨λ₯Ό κ±°μ³ μμ
μ νμ©μ μΉμΈν΄ λ리λλ‘ νκ² μ΅λλ€.</p>
|
50 |
+
<p>Try DNA-powered Mnemos Assistant! <a href="https://request-demo.dnotitia.ai/">Beta Open β</a></p>
|
51 |
+
</div>
|
52 |
+
|
53 |
+
## Training Procedure
|
54 |
+
|
55 |
+
<p align="center">
|
56 |
+
<img src="assets/training-procedure.png" width="600" style="margin: 40px auto;">
|
57 |
+
</p>
|
58 |
+
|
59 |
+
## Evaluation
|
60 |
+
|
61 |
+
We evaluated DNA 1.0 8B Instruct against other prominent language models of similar size across various benchmarks, including Korean-specific tasks and general language understanding metrics. More details will be provided in the upcoming <u>Technical Report</u>.
|
62 |
+
|
63 |
+
| Language | Benchmark | **dnotitia/Llama-DNA-1.0-8B-Instruct** | LGAI-EXAONE/EXAONE-3.5-7.8B-Instruct | LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct | yanolja/EEVE-Korean-Instruct-10.8B-v1.0 | Qwen/Qwen2.5-7B-Instruct | meta-llama/Llama-3.1-8B-Instruct | mistralai/Mistral-7B-Instruct-v0.3 | NCSOFT/Llama-VARCO-8B-Instruct | upstage/SOLAR-10.7B-Instruct-v1.0 |
|
64 |
+
|----------|------------|----------------------------------------|--------------------------------------|--------------------------------------|-----------------------------------------|--------------------------|----------------------------------|------------------------------------|--------------------------------|-----------------------------------|
|
65 |
+
| Korean | KMMLU | **53.26** (1st) | 45.30 | 45.28 | 42.17 | <u>45.66</u> | 41.66 | 31.45 | 38.49 | 41.50 |
|
66 |
+
| | KMMLU-hard | **29.46** (1st) | 23.17 | 20.78 | 19.25 | <u>24.78</u> | 20.49 | 17.86 | 19.83 | 20.61 |
|
67 |
+
| | KoBEST | **83.40** (1st) | 79.05 | 80.13 | <u>81.67</u> | 78.51 | 67.56 | 63.77 | 72.99 | 73.26 |
|
68 |
+
| | Belebele | **57.99** (1st) | 40.97 | 45.11 | 49.40 | <u>54.85</u> | 54.70 | 40.31 | 53.17 | 48.68 |
|
69 |
+
| | CSATQA | <u>43.32</u> (2nd) | 40.11 | 34.76 | 39.57 | **45.45** | 36.90 | 27.27 | 32.62 | 34.22 |
|
70 |
+
| English | MMLU | 66.64 (3rd) | 65.27 | 64.32 | 63.63 | **74.26** | <u>68.26</u> | 62.04 | 63.25 | 65.30 |
|
71 |
+
| | MMLU-Pro | **43.05** (1st) | 40.73 | 38.90 | 32.79 | <u>42.5</u> | 40.92 | 33.49 | 37.11 | 30.25 |
|
72 |
+
| | GSM8K | **80.52** (1st) | 65.96 | <u>80.06</u> | 56.18 | 75.74 | 75.82 | 49.66 | 64.14 | 69.22 |
|
73 |
+
- The *highest* *scores* are in **bold** form, and the *second*\-*highest* *scores* are <u>underlined</u>.
|
74 |
+
|
75 |
+
**Evaluation Protocol**
|
76 |
+
For easy reproduction of our evaluation results, we list the evaluation tools and settings used below:
|
77 |
+
|
78 |
+
| | Evaluation setting | Metric | Evaluation tool |
|
79 |
+
|------------|--------------------|-------------------------------------|-----------------|
|
80 |
+
| KMMLU | 5-shot | macro\_avg / exact\_match | lm-eval-harness |
|
81 |
+
| KMMLU Hard | 5-shot | macro\_avg / exact\_match | lm-eval-harness |
|
82 |
+
| KoBEST | 5-shot | macro\_avg / f1 | lm-eval-harness |
|
83 |
+
| Belebele | 0-shot | acc | lm-eval-harness |
|
84 |
+
| CSATQA | 0-shot | acc\_norm | lm-eval-harness |
|
85 |
+
| MMLU | 5-shot | macro\_avg / acc | lm-eval-harness |
|
86 |
+
| MMLU Pro | 5-shot | macro\_avg / exact\_match | lm-eval-harness |
|
87 |
+
| GSM8K | 5-shot | acc, exact\_match & strict\_extract | lm-eval-harness |
|
88 |
+
|
89 |
+
## Quickstart
|
90 |
+
|
91 |
+
This model requires `transformers >= 4.43.0`.
|
92 |
+
|
93 |
+
```python
|
94 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
|
95 |
+
|
96 |
+
tokenizer = AutoTokenizer.from_pretrained('dnotitia/Llama-DNA-1.0-8B-Instruct')
|
97 |
+
model = AutoModelForCausalLM.from_pretrained('dnotitia/Llama-DNA-1.0-8B-Instruct', device_map='auto')
|
98 |
+
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
99 |
+
|
100 |
+
conversation = [
|
101 |
+
{"role": "system", "content": "You are a helpful assistant, Dnotitia DNA."},
|
102 |
+
{"role": "user", "content": "λμ μ΄λ¦μ?"},
|
103 |
+
]
|
104 |
+
inputs = tokenizer.apply_chat_template(conversation,
|
105 |
+
add_generation_prompt=True,
|
106 |
+
return_dict=True,
|
107 |
+
return_tensors="pt").to(model.device)
|
108 |
+
_ = model.generate(**inputs, streamer=streamer)
|
109 |
+
```
|
110 |
+
|
111 |
+
## Limitations
|
112 |
+
|
113 |
+
While DNA 1.0 8B Instruct demonstrates strong performance, users should be aware of the following limitations:
|
114 |
+
|
115 |
+
- The model may occasionally generate biased or inappropriate content
|
116 |
+
- Responses are based on training data and may not reflect current information
|
117 |
+
- The model may sometimes produce factually incorrect or inconsistent answers
|
118 |
+
- Performance may vary depending on the complexity and domain of the task
|
119 |
+
- Generated content should be reviewed for accuracy and appropriateness
|
120 |
+
|
121 |
+
## License
|
122 |
+
|
123 |
+
This model is released under CC BY-NC 4.0 license. For commercial usage inquiries, please [Contact us](https://www.dnotitia.com/contact/post-form).
|
124 |
+
|
125 |
+
## Appendix
|
126 |
+
|
127 |
+
- KMMLU scores comparison chart:
|
128 |
+
<img src="assets/comparison-chart.png" width="100%" style="margin: 40px auto;">
|
129 |
+
|
130 |
+
- DNA 1.0 8B Instruct model architecture <sup>[1]</sup>:
|
131 |
+
<img src="assets/model-architecture.png" width="500" style="margin: 40px auto;">
|
132 |
+
|
133 |
+
[1]: <https://www.linkedin.com/posts/sebastianraschka_the-llama-32-1b-and-3b-models-are-my-favorite-activity-7248317830943686656-yyYD/>
|
134 |
+
|
135 |
+
- The median percentage of modelβs weight difference between before and after the merge (our SFT model + Llama 3.1 8B Instruct):
|
136 |
+
<img src="assets/ours-vs-merged.png" width="100%" style="margin: 40px auto;">
|
137 |
+
|
138 |
+
## Citation
|
139 |
+
|
140 |
+
If you use or discuss this model in your academic research, please cite the project to help spread awareness:
|
141 |
+
|
142 |
+
```
|
143 |
+
@article{dnotitiadna2024,
|
144 |
+
title = {Dnotitia DNA 1.0 8B Instruct},
|
145 |
+
author = {Jungyup Lee, Jemin Kim, Sang Park, Seungjae Lee},
|
146 |
+
year = {2024},
|
147 |
+
url = {https://huggingface.co/dnotitia/DNA-1.0-8B-Instruct},
|
148 |
+
version = {1.0},
|
149 |
+
}
|
150 |
+
```
|
151 |
+
|
152 |
+
|