--- library_name: transformers tags: - text-generation-inference - transformers - unsloth - trl - llama language: - en base_model: hiieu/Meta-Llama-3-8B-Instruct-function-calling-json-mode pipeline_tag: text-generation --- # QuantFactory/Meta-Llama-3-8B-Instruct-function-calling-json-mode-GGUF This is quantized version of [hiieu/Meta-Llama-3-8B-Instruct-function-calling-json-mode](https://huggingface.co/hiieu/Meta-Llama-3-8B-Instruct-function-calling-json-mode) created using llama.cpp ## Model Description This model was fine-tuned on meta-llama/Meta-Llama-3-8B-Instruct for function calling and json mode. ## Usage ### JSON Mode ```python from transformers import AutoTokenizer, AutoModelForCausalLM import torch model_id = "hiieu/Meta-Llama-3-8B-Instruct-function-calling-json-mode" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype=torch.bfloat16, device_map="auto", ) messages = [ {"role": "system", "content": "You are a helpful assistant, answer in JSON with key \"message\""}, {"role": "user", "content": "Who are you?"}, ] input_ids = tokenizer.apply_chat_template( messages, add_generation_prompt=True, return_tensors="pt" ).to(model.device) terminators = [ tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|eot_id|>") ] outputs = model.generate( input_ids, max_new_tokens=256, eos_token_id=terminators, do_sample=True, temperature=0.6, top_p=0.9, ) response = outputs[0][input_ids.shape[-1]:] print(tokenizer.decode(response, skip_special_tokens=True)) # >> {"message": "I am a helpful assistant, with access to a vast amount of information. I can help you with tasks such as answering questions, providing definitions, translating text, and more. Feel free to ask me anything!"} ``` ### Function Calling Function calling requires two step inferences, below is the example: ## Step 1: ```python functions_metadata = [ { "type": "function", "function": { "name": "get_temperature", "description": "get temperature of a city", "parameters": { "type": "object", "properties": { "city": { "type": "string", "description": "name" } }, "required": [ "city" ] } } } ] messages = [ { "role": "system", "content": f"""You are a helpful assistant with access to the following functions: \n {str(functions_metadata)}\n\nTo use these functions respond with:\n {{ "name": "function_name", "arguments": {{ "arg_1": "value_1", "arg_1": "value_1", ... }} }} \n\nEdge cases you must handle:\n - If there are no functions that match the user request, you will respond politely that you cannot help."""}, { "role": "user", "content": "What is the temperature in Tokyo right now?"} ] input_ids = tokenizer.apply_chat_template( messages, add_generation_prompt=True, return_tensors="pt" ).to(model.device) terminators = [ tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|eot_id|>") ] outputs = model.generate( input_ids, max_new_tokens=256, eos_token_id=terminators, do_sample=True, temperature=0.6, top_p=0.9, ) response = outputs[0][input_ids.shape[-1]:] print(tokenizer.decode(response, skip_special_tokens=True)) # >> {"name": "get_temperature", "arguments": '{"city": "Tokyo"}'} """} ``` ## Step 2: ```python messages = [ { "role": "system", "content": f"""You are a helpful assistant with access to the following functions: \n {str(functions_metadata)}\n\nTo use these functions respond with:\n {{ "name": "function_name", "arguments": {{ "arg_1": "value_1", "arg_1": "value_1", ... }} }} \n\nEdge cases you must handle:\n - If there are no functions that match the user request, you will respond politely that you cannot help."""}, { "role": "user", "content": "What is the temperature in Tokyo right now?"}, # You will get the previous prediction, extract it will the tag # execute the function and append it to the messages like below: { "role": "assistant", "content": """ {"name": "get_temperature", "arguments": '{"city": "Tokyo"}'} """}, { "role": "user", "content": """ {"temperature":30 C} """} ] input_ids = tokenizer.apply_chat_template( messages, add_generation_prompt=True, return_tensors="pt" ).to(model.device) terminators = [ tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|eot_id|>") ] outputs = model.generate( input_ids, max_new_tokens=256, eos_token_id=terminators, do_sample=True, temperature=0.6, top_p=0.9, ) response = outputs[0][input_ids.shape[-1]:] print(tokenizer.decode(response, skip_special_tokens=True)) # >> The current temperature in Tokyo is 30 degrees Celsius. ``` # Uploaded model - **Developed by:** hiieu This model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [](https://github.com/unslothai/unsloth)