aashish1904's picture
Upload README.md with huggingface_hub
77f37b9 verified
|
raw
history blame
2.48 kB
metadata
language:
  - en
  - fr
  - de
  - es
  - it
  - pt
  - ru
  - zh
  - ja
license: apache-2.0

QuantFactory/Mistral-Nemo-Instruct-2407-abliterated-GGUF

This is quantized version of natong19/Mistral-Nemo-Instruct-2407-abliterated created using llama.cpp

Original Model Card

Mistral-Nemo-Instruct-2407-abliterated

Introduction

Abliterated version of Mistral-Nemo-Instruct-2407, a Large Language Model (LLM) trained jointly by Mistral AI and NVIDIA that significantly outperforms existing models smaller or similar in size. The model's strongest refusal directions have been ablated via weight orthogonalization, but the model may still refuse your request, misunderstand your intent, or provide unsolicited advice regarding ethics or safety.

Key features

  • Trained with a 128k context window
  • Trained on a large proportion of multilingual and code data
  • Drop-in replacement of Mistral 7B

Quickstart

from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

model_id = "natong19/Mistral-Nemo-Instruct-2407-abliterated"
device = "cuda"

tokenizer = AutoTokenizer.from_pretrained(model_id)

conversation = [{"role": "user", "content": "Where's the capital of France?"}]

tool_use_prompt = tokenizer.apply_chat_template(
            conversation,
            tokenize=False,
            add_generation_prompt=True,
)

inputs = tokenizer(tool_use_prompt, return_tensors="pt", return_token_type_ids=False).to(device)

model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, device_map="auto")

outputs = model.generate(**inputs, max_new_tokens=128)
print(tokenizer.decode(outputs[0][len(inputs["input_ids"][0]):], skip_special_tokens=True))

Evaluation

Evaluation framework: lm-evaluation-harness 0.4.2

Benchmark Mistral-Nemo-Instruct-2407 Mistral-Nemo-Instruct-2407-abliterated
ARC (25-shot) 65.9 65.8
GSM8K (5-shot) 76.2 75.2
HellaSwag (10-shot) 84.3 84.3
MMLU (5-shot) 68.4 68.8
TruthfulQA (0-shot) 54.9 55.0
Winogrande (5-shot) 82.2 82.6