File size: 3,095 Bytes
fdaa486
 
 
 
 
 
 
 
 
 
 
 
 
4b18ec9
fdaa486
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b18ec9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
---
language:
- en
license: other
library_name: transformers
tags:
- orpo
- llama 3
- rlhf
- sft
datasets:
- mlabonne/orpo-dpo-mix-40k
base_model: mlabonne/OrpoLlama-3-8B
pipeline_tag: text-generation
---

# OrpoLlama-3-8B-GGUF
- This is quantized version of [mlabonne/OrpoLlama-3-8B](https://huggingface.co/mlabonne/OrpoLlama-3-8B) created using llama.cpp

# Model Description

![](https://i.imgur.com/ZHwzQvI.png)

This is an ORPO fine-tune of [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) on 1k samples of [mlabonne/orpo-dpo-mix-40k](https://huggingface.co/datasets/mlabonne/orpo-dpo-mix-40k) created for [this article](https://huggingface.co/blog/mlabonne/orpo-llama-3).

It's a successful fine-tune that follows the ChatML template!


## πŸ”Ž Application

This model uses a context window of 8k. It was trained with the ChatML template.

## πŸ† Evaluation

### Nous

OrpoLlama-4-8B outperforms Llama-3-8B-Instruct on the GPT4All and TruthfulQA datasets.

Evaluation performed using [LLM AutoEval](https://github.com/mlabonne/llm-autoeval), see the entire leaderboard [here](https://huggingface.co/spaces/mlabonne/Yet_Another_LLM_Leaderboard).

| Model                                                                                                                                                                     |   Average |   AGIEval |   GPT4All | TruthfulQA |  Bigbench |
| ------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | --------: | --------: | --------: | ---------: | --------: |
| [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) [πŸ“„](https://gist.github.com/mlabonne/8329284d86035e6019edb11eb0933628) |     51.34 |     41.22 |     69.86 |      51.65 |     42.64 |
| [**mlabonne/OrpoLlama-3-8B**](https://huggingface.co/mlabonne/OrpoLlama-3-8B) [πŸ“„](https://gist.github.com/mlabonne/22896a1ae164859931cc8f4858c97f6f)                     | **48.63** | **34.17** | **70.59** | **52.39** | **37.36** |
| [mlabonne/OrpoLlama-3-8B-1k](https://huggingface.co/mlabonne/OrpoLlama-3-8B) [πŸ“„](https://gist.github.com/mlabonne/f41dad371d1781d0434a4672fd6f0b82)                      | 46.76     | 31.56     | 70.19     |  48.11     | 37.17     |
| [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) [πŸ“„](https://gist.github.com/mlabonne/616b6245137a9cfc4ea80e4c6e55d847)                   |     45.42 |      31.1 |     69.95 |      43.91 |      36.7 |

`mlabonne/OrpoLlama-3-8B-1k` corresponds to a version of this model trained on 1K samples (you can see the parameters in [this article](https://huggingface.co/blog/mlabonne/orpo-llama-3)).

### Open LLM Leaderboard

TBD.

## πŸ“ˆ Training curves

You can find the experiment on W&B at [this address](https://wandb.ai/mlabonne/DPO/runs/vxnmq24z/workspace?nw=nwusermlabonne).

![image/png](https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/zm71HyZiG96YY1GUtpfHq.png)