File size: 12,629 Bytes
c38554a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330

---

language:
- en
license: apache-2.0
library_name: transformers
tags:
- merge
- mergekit
- lazymergekit
- bfloat16
- roleplay
- creative
- instruct
- anvita
- qwen
- nerd
- homer
- Qandora
base_model:
- bunnycore/Qandora-2.5-7B-Creative
- allknowingroger/HomerSlerp1-7B
- sethuiyer/Qwen2.5-7B-Anvita
- fblgit/cybertron-v4-qw7B-MGS
- jeffmeloy/Qwen2.5-7B-nerd-uncensored-v1.0
- newsbang/Homer-v0.5-Qwen2.5-7B
pipeline_tag: text-generation
model-index:
- name: Qwen2.5-7B-HomerAnvita-NerdMix
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: IFEval (0-Shot)
      type: HuggingFaceH4/ifeval
      args:
        num_few_shot: 0
    metrics:
    - type: inst_level_strict_acc and prompt_level_strict_acc
      value: 77.08
      name: strict accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=ZeroXClem/Qwen2.5-7B-HomerAnvita-NerdMix
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BBH (3-Shot)
      type: BBH
      args:
        num_few_shot: 3
    metrics:
    - type: acc_norm
      value: 36.58
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=ZeroXClem/Qwen2.5-7B-HomerAnvita-NerdMix
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MATH Lvl 5 (4-Shot)
      type: hendrycks/competition_math
      args:
        num_few_shot: 4
    metrics:
    - type: exact_match
      value: 29.53
      name: exact match
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=ZeroXClem/Qwen2.5-7B-HomerAnvita-NerdMix
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GPQA (0-shot)
      type: Idavidrein/gpqa
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 9.28
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=ZeroXClem/Qwen2.5-7B-HomerAnvita-NerdMix
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MuSR (0-shot)
      type: TAUR-Lab/MuSR
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 14.41
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=ZeroXClem/Qwen2.5-7B-HomerAnvita-NerdMix
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU-PRO (5-shot)
      type: TIGER-Lab/MMLU-Pro
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 38.13
      name: accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=ZeroXClem/Qwen2.5-7B-HomerAnvita-NerdMix
      name: Open LLM Leaderboard

---

[![QuantFactory Banner](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ)](https://hf.co/QuantFactory)


# QuantFactory/Qwen2.5-7B-HomerAnvita-NerdMix-GGUF
This is quantized version of [ZeroXClem/Qwen2.5-7B-HomerAnvita-NerdMix](https://huggingface.co/ZeroXClem/Qwen2.5-7B-HomerAnvita-NerdMix) created using llama.cpp

# Original Model Card


# ZeroXClem/Qwen2.5-7B-HomerAnvita-NerdMix

**ZeroXClem/Qwen2.5-7B-HomerAnvita-NerdMix** is an advanced language model meticulously crafted by merging five pre-trained models using the powerful [mergekit](https://github.com/cg123/mergekit) framework. This fusion leverages the **Model Stock** merge method to combine the creative prowess of **Qandora**, the instructive capabilities of **Qwen-Instruct-Fusion**, the sophisticated blending of **HomerSlerp1**, the mathematical precision of **Cybertron-MGS**, and the uncensored expertise of **Qwen-Nerd**. The resulting model excels in creative text generation, contextual understanding, technical reasoning, and dynamic conversational interactions.

## πŸš€ Merged Models

This model merge incorporates the following:

- [**bunnycore/Qandora-2.5-7B-Creative**](https://huggingface.co/bunnycore/Qandora-2.5-7B-Creative): Specializes in creative text generation, enhancing the model's ability to produce imaginative and diverse content.

- [**allknowingroger/HomerSlerp1-7B**](https://huggingface.co/allknowingroger/HomerSlerp1-7B): Utilizes spherical linear interpolation (SLERP) to blend model weights smoothly, ensuring a harmonious integration of different model attributes.

- [**sethuiyer/Qwen2.5-7B-Anvita**](https://huggingface.co/sethuiyer/Qwen2.5-7B-Anvita): Focuses on instruction-following capabilities, improving the model's performance in understanding and executing user commands.

- [**fblgit/cybertron-v4-qw7B-MGS**](https://huggingface.co/fblgit/cybertron-v4-qw7B-MGS): Enhances mathematical reasoning and precision, enabling the model to handle complex computational tasks effectively.

- [**jeffmeloy/Qwen2.5-7B-nerd-uncensored-v1.0**](https://huggingface.co/jeffmeloy/Qwen2.5-7B-nerd-uncensored-v1.0): Provides uncensored expertise and robust technical knowledge, making the model suitable for specialized technical support and information retrieval.

- [**newsbang/Homer-v0.5-Qwen2.5-7B**](https://huggingface.co/newsbang/Homer-v0.5-Qwen2.5-7B): Acts as the foundational conversational model, providing robust language comprehension and generation capabilities.

## 🧩 Merge Configuration

The configuration below outlines how the models are merged using the **Model Stock** method. This approach ensures a balanced and effective integration of the unique strengths from each source model.

```yaml
# Merge configuration for ZeroXClem/Qwen2.5-7B-HomerAnvita-NerdMix using Model Stock

models:
  - model: bunnycore/Qandora-2.5-7B-Creative
  - model: allknowingroger/HomerSlerp1-7B
  - model: sethuiyer/Qwen2.5-7B-Anvita
  - model: fblgit/cybertron-v4-qw7B-MGS
  - model: jeffmeloy/Qwen2.5-7B-nerd-uncensored-v1.0
merge_method: model_stock
base_model: newsbang/Homer-v0.5-Qwen2.5-7B
normalize: false
int8_mask: true
dtype: bfloat16
```

### Key Parameters

- **Merge Method (`merge_method`):** Utilizes the **Model Stock** method, as described in [Model Stock](https://arxiv.org/abs/2403.19522), to effectively combine multiple models by leveraging their strengths.
  
- **Models (`models`):** Specifies the list of models to be merged:
  - **bunnycore/Qandora-2.5-7B-Creative:** Enhances creative text generation.
  - **allknowingroger/HomerSlerp1-7B:** Facilitates smooth blending of model weights using SLERP.
  - **sethuiyer/Qwen2.5-7B-Anvita:** Improves instruction-following capabilities.
  - **fblgit/cybertron-v4-qw7B-MGS:** Enhances mathematical reasoning and precision.
  - **jeffmeloy/Qwen2.5-7B-nerd-uncensored-v1.0:** Provides uncensored technical expertise.

- **Base Model (`base_model`):** Defines the foundational model for the merge, which is **newsbang/Homer-v0.5-Qwen2.5-7B** in this case.
  
- **Normalization (`normalize`):** Set to `false` to retain the original scaling of the model weights during the merge.
  
- **INT8 Mask (`int8_mask`):** Enabled (`true`) to apply INT8 quantization masking, optimizing the model for efficient inference without significant loss in precision.
  
- **Data Type (`dtype`):** Uses `bfloat16` to maintain computational efficiency while ensuring high precision.

## πŸ† Performance Highlights

- **Creative Text Generation:** Enhanced ability to produce imaginative and diverse content suitable for creative writing, storytelling, and content creation.
  
- **Instruction Following:** Improved performance in understanding and executing user instructions, making the model more responsive and accurate in task execution.
  
- **Mathematical Reasoning:** Enhanced capability to handle complex computational tasks with high precision, suitable for technical and analytical applications.
  
- **Uncensored Technical Expertise:** Provides robust technical knowledge without content restrictions, making it ideal for specialized technical support and information retrieval.
  
  
- **Optimized Inference:** INT8 masking and `bfloat16` data type contribute to efficient computation, enabling faster response times without compromising quality.

## 🎯 Use Case & Applications

**ZeroXClem/Qwen2.5-7B-HomerAnvita-NerdMix** is designed to excel in environments that demand a combination of creative generation, precise instruction following, mathematical reasoning, and technical expertise. Ideal applications include:

- **Creative Writing Assistance:** Aiding authors and content creators in generating imaginative narratives, dialogues, and descriptive text.
  
- **Interactive Storytelling and Role-Playing:** Enhancing dynamic and engaging interactions in role-playing games and interactive storytelling platforms.
  
- **Educational Tools and Tutoring Systems:** Providing detailed explanations, answering questions, and assisting in educational content creation with contextual understanding.
  
- **Technical Support and Customer Service:** Offering accurate and contextually relevant responses in technical support scenarios, improving user satisfaction.
  
- **Content Generation for Marketing:** Creating compelling and diverse marketing copy, social media posts, and promotional material with creative flair.
  
- **Mathematical Problem Solving:** Assisting in solving complex mathematical problems and providing step-by-step explanations for educational purposes.
  
- **Technical Documentation and Analysis:** Generating detailed technical documents, reports, and analyses with high precision and clarity.

## πŸ“ Usage

To utilize **ZeroXClem/Qwen2.5-7B-HomerAnvita-NerdMix**, follow the steps below:

### Installation

First, install the necessary libraries:

```bash
pip install -qU transformers accelerate
```

### Example Code

Below is an example of how to load and use the model for text generation:

```python
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
import torch

# Define the model name
model_name = "ZeroXClem/Qwen2.5-7B-HomerAnvita-NerdMix"

# Load the tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_name)

# Load the model
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype=torch.bfloat16,
    device_map="auto"
)

# Initialize the pipeline
text_generator = pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer,
    torch_dtype=torch.bfloat16,
    device_map="auto"
)

# Define the input prompt
prompt = "Explain the significance of artificial intelligence in modern healthcare."

# Generate the output
outputs = text_generator(
    prompt,
    max_new_tokens=150,
    do_sample=True,
    temperature=0.7,
    top_k=50,
    top_p=0.95
)

# Print the generated text
print(outputs[0]["generated_text"])
```

### Notes

- **Fine-Tuning:** This merged model may require fine-tuning to optimize performance for specific applications or domains.
  
- **Resource Requirements:** Ensure that your environment has sufficient computational resources, especially GPU-enabled hardware, to handle the model efficiently during inference.
  
- **Customization:** Users can adjust parameters such as `temperature`, `top_k`, and `top_p` to control the creativity and diversity of the generated text.


## πŸ“œ License

This model is open-sourced under the **Apache-2.0 License**.

## πŸ’‘ Tags

- `merge`
- `mergekit`
- `model_stock`
- `Qwen`
- `Homer`
- `Anvita`
- `Nerd`
- `ZeroXClem/Qwen2.5-7B-HomerAnvita-NerdMix`
- `bunnycore/Qandora-2.5-7B-Creative`
- `allknowingroger/HomerSlerp1-7B`
- `sethuiyer/Qwen2.5-7B-Anvita`
- `fblgit/cybertron-v4-qw7B-MGS`
- `jeffmeloy/Qwen2.5-7B-nerd-uncensored-v1.0`
- `newsbang/Homer-v0.5-Qwen2.5-7B`

---
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_ZeroXClem__Qwen2.5-7B-HomerAnvita-NerdMix)

|      Metric       |Value|
|-------------------|----:|
|Avg.               |34.17|
|IFEval (0-Shot)    |77.08|
|BBH (3-Shot)       |36.58|
|MATH Lvl 5 (4-Shot)|29.53|
|GPQA (0-shot)      | 9.28|
|MuSR (0-shot)      |14.41|
|MMLU-PRO (5-shot)  |38.13|