munish0838 commited on
Commit
0565f04
1 Parent(s): 4ba09c4

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +295 -0
README.md CHANGED
@@ -25,6 +25,11 @@ We introduce [SeaLLM-7B-v2](https://huggingface.co/SeaLLMs/SeaLLM-7B-v2), the st
25
  * It achieves **7.54** score on the 🇬🇧 **MT-bench**, it ranks 3rd place on the leaderboard for 7B category and is the most outperforming multilingual model.
26
  * It scores **45.74** on the VMLU benchmark for Vietnamese 🇻🇳, and is the only open-source multilingual model that can be competitive to monolingual models ([Vistral-7B](https://huggingface.co/Viet-Mistral/Vistral-7B-Chat)) of similar sizes.
27
 
 
 
 
 
 
28
 
29
  <blockquote style="color:red">
30
  <p><strong style="color: red">Terms of Use and License</strong>:
@@ -36,3 +41,293 @@ By using our released weights, codes, and demos, you agree to and comply with th
36
  > Developers and stakeholders should perform their own red teaming and provide related security measures before deployment, and they must abide by and comply with local governance and regulations.
37
  > In no event shall the authors be held liable for any claim, damages, or other liability arising from the use of the released weights, codes, or demos.
38
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25
  * It achieves **7.54** score on the 🇬🇧 **MT-bench**, it ranks 3rd place on the leaderboard for 7B category and is the most outperforming multilingual model.
26
  * It scores **45.74** on the VMLU benchmark for Vietnamese 🇻🇳, and is the only open-source multilingual model that can be competitive to monolingual models ([Vistral-7B](https://huggingface.co/Viet-Mistral/Vistral-7B-Chat)) of similar sizes.
27
 
28
+ ### Release and DEMO
29
+
30
+ - DEMO: [SeaLLMs/SeaLLM-7B](https://huggingface.co/spaces/SeaLLMs/SeaLLM-7B).
31
+ - Technical report: [Arxiv: SeaLLMs - Large Language Models for Southeast Asia](https://arxiv.org/pdf/2312.00738.pdf).
32
+ - Model weights: [SeaLLM-7B-v2](https://huggingface.co/SeaLLMs/SeaLLM-7B-v2).
33
 
34
  <blockquote style="color:red">
35
  <p><strong style="color: red">Terms of Use and License</strong>:
 
41
  > Developers and stakeholders should perform their own red teaming and provide related security measures before deployment, and they must abide by and comply with local governance and regulations.
42
  > In no event shall the authors be held liable for any claim, damages, or other liability arising from the use of the released weights, codes, or demos.
43
 
44
+
45
+
46
+ ### What's new since SeaLLM-13B-v1 and SeaLLM-7B-v1?
47
+
48
+ * SeaLLM-7B-v2 is continue-pretrained from [Mistral-7B](https://huggingface.co/mistralai/Mistral-7B-v0.1) and underwent carefully designed tuning with focus in reasoning.
49
+
50
+
51
+ ## Evaluation
52
+
53
+
54
+ ### Zero-shot CoT Multilingual Math Reasoning
55
+
56
+ [SeaLLM-7B-v2](https://huggingface.co/SeaLLMs/SeaLLM-7B-v2) achieves with **78.2** score on the GSM8K with zero-shot CoT reasoning, making it the **state of the art** in the realm of 7B models. It also outperforms GPT-3.5 in the same GSM8K benchmark as translated into SEA languages (🇨🇳 🇻🇳 🇮🇩 🇹🇭). [SeaLLM-7B-v2](https://huggingface.co/SeaLLMs/SeaLLM-7B-v2) also surpasses GPT-3.5 on the Thai-translated MATH benchmark, with **22.4** vs 18.1 scores.
57
+
58
+ ![fig_sea_math_side_by_side.png](fig_sea_math_side_by_side.png)
59
+
60
+
61
+ <details>
62
+ <summary>See details on English and translated GSM8K and MATH with zero-shot reasoning</summary>
63
+ <br>
64
+
65
+ | Model | GSM8K<br>en | MATH<br>en | GSM8K<br>zh | MATH<br>zh | GSM8K<br>vi | MATH<br>vi | GSM8K<br>id | MATH<br>id | GSM8K<br>th | MATH<br>th
66
+ | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |
67
+ | GPT-3.5 | 80.8 | 34.1 | 48.2 | 21.5 | 55 | 26.5 | 64.3 | 26.4 | 35.8 | 18.1
68
+ | Qwen-14B-chat | 61.4 | 18.4 | 41.6 | 11.8 | 33.6 | 3.6 | 44.7 | 8.6 | 22 | 6
69
+ | Vistral-7b-chat | 48.2 | 12.5 | | | 48.7 | 3.1 | | | |
70
+ | Qwen1.5-7B-chat | 56.8 | 15.3 | 40 | 2.7 | 37.7 | 9 | 36.9 | 7.7 | 21.9 |
71
+ | SeaLLM-7B-v2 | 78.2 | 27.5 | 53.7 | 17.6 | 69.9 | 23.8 | 71.5 | 24.4 | 59.6 | 22.4
72
+
73
+ </details>
74
+
75
+ Baselines were evaluated using their respective chat-template and system prompts ([Qwen1.5-7B-chat](https://huggingface.co/Qwen/Qwen1.5-7B-Chat/blob/main/tokenizer_config.json), [Vistral](https://huggingface.co/Viet-Mistral/Vistral-7B-Chat)).
76
+
77
+ #### Zero-shot MGSM
78
+
79
+ [SeaLLM-7B-v2](https://huggingface.co/SeaLLMs/SeaLLM-7B-v2) also outperforms GPT-3.5 and Qwen-14B on the multilingual MGSM for Zh and Th.
80
+
81
+ | Model | MGSM-Zh | MGSM-Th
82
+ |-----| ----- | ---
83
+ | ChatGPT (reported) | 61.2 | 47.2
84
+ | Qwen-14B-chat | 59.6 | 28
85
+ | SeaLLM-7B-v2 | **64.8** | **62.4**
86
+
87
+
88
+ ### Zero-shot Commonsense Reasoning
89
+
90
+ We compare [SeaLLM-7B-v2](https://huggingface.co/SeaLLMs/SeaLLM-7B-v2) with ChatGPT and Mistral-7B-instruct on various zero-shot commonsense benchmarks (Arc-Challenge, Winogrande and Hellaswag). We use the 2-stage technique in [(Kojima et al., 2023)](https://arxiv.org/pdf/2205.11916.pdf) to grab the answer. Note that we **DID NOT** use "Let's think step-by-step" to invoke explicit CoT.
91
+
92
+ | 0-shot reasoning | Arc-Challenge | Winogrande | Hellaswag
93
+ |-----| ----- | --- | -- |
94
+ | ChatGPT (reported) | 84.6* | 66.8* | 72.0*
95
+ | ChatGPT (reproduced)| 84.1 | 63.1 | 79.5
96
+ | Mistral-7B-Instruct | 68.1 | 56.4 | 45.6
97
+ | Qwen1.5-7B-chat | 79.3 | 59.4 | 69.3
98
+ | SeaLLM-7B-v2 | 82.5 | 68.3 | 80.9
99
+
100
+ Baselines were evaluated using their respective chat-template and system prompts ([Qwen1.5-7B-chat](https://huggingface.co/Qwen/Qwen1.5-7B-Chat/blob/main/tokenizer_config.json), [Mistral](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1)).
101
+
102
+ ### Multilingual World Knowledge
103
+
104
+
105
+ We evaluate models on 3 benchmarks following the recommended default setups: 5-shot MMLU for En, 3-shot [M3Exam](https://arxiv.org/pdf/2306.05179.pdf) (M3e) for En, Zh, Vi, Id, Th, and zero-shot [VMLU](https://vmlu.ai/) for Vi.
106
+
107
+ | Model | Langs | En<br>MMLU | En<br>M3e | Zh<br>M3e | Vi<br>M3e | Vi<br>VMLU | Id<br>M3e | Th<br>M3e
108
+ |-----| ----- | --- | -- | ----- | ---- | --- | --- | --- |
109
+ | GPT-3.5 | Multi | 68.90 | 75.46 | 60.20 | 58.64 | 46.32 | 49.27 | 37.41
110
+ | Vistral-7B-chat | Mono | 56.86 | 67.00 | 44.56 | 54.33 | 50.03 | 36.49 | 25.27
111
+ | Qwen1.5-7B-chat | Multi | 61.00 | 52.07 | 81.96 | 43.38 | 45.02 | 24.29 | 20.25
112
+ | SeaLLM-7B-v2 | Multi | 61.89 | 70.91 | 55.43 | 51.15 | 45.74 | 42.25 | 35.52
113
+
114
+
115
+ VMLU reproduce script [here](https://github.com/DAMO-NLP-SG/SeaLLMs/blob/main/evaluation/vmlu/vmlu_run.py). Lm-eval was used to evaluate MMLU.
116
+ 0-shot VMLU scores for baselines were evaluated using their respective chat-template and system prompts ([Qwen1.5-7B-chat](https://huggingface.co/Qwen/Qwen1.5-7B-Chat/blob/main/tokenizer_config.json)).
117
+
118
+
119
+ ### MT-Bench
120
+
121
+ On the English [MT-bench](https://arxiv.org/abs/2306.05685) metric, SeaLLM-7B-v2 achieves **7.54** score on the MT-bench (3rd place on the leaderboard for 7B category), outperforms many 70B models and is arguably the only one that handles 10 SEA languages.
122
+
123
+ Refer to [mt_bench/seallm_7b_v2.jsonl](https://huggingface.co/SeaLLMs/SeaLLM-7B-v2/blob/main/evaluation/mt_bench/seallm_7b_v2.jsonl) for the MT-bench predictions of SeaLLM-7B-v2, and [here](https://github.com/lm-sys/FastChat/issues/3013#issue-2118685341) to reproduce it.
124
+
125
+ | Model | Access | Langs | MT-Bench
126
+ | --- | --- | --- | --- |
127
+ | GPT-4-turbo | closed | multi | 9.32
128
+ | GPT-4-0613 | closed | multi | 9.18
129
+ | Mixtral-8x7b (46B) | open | multi | 8.3
130
+ | Starling-LM-7B-alpha | open | mono (en) | 8.0
131
+ | OpenChat-3.5-7B | open | mono (en) | 7.81
132
+ | **SeaLLM-7B-v2** | **open** | **multi (10+)** | **7.54**
133
+ | [Qwen-14B](https://huggingface.co/Qwen/Qwen-14B-Chat) | open | multi | 6.96
134
+ | [Llama-2-70B](https://huggingface.co/meta-llama/Llama-2-70b-chat-hf) | open | mono (en) | 6.86
135
+ | Mistral-7B-instuct | open | mono (en) | 6.84
136
+
137
+
138
+ ### Sea-Bench
139
+
140
+ Similar to MT-Bench, [Sea-bench](https://huggingface.co/datasets/SeaLLMs/Sea-bench) is a set of categorized instruction test sets to measure models' ability as an assistant that is specifically focused on 9 SEA languages, including non-Latin low-resource languages.
141
+
142
+ As shown, the huge improvements come from math-reasoning, reaching GPT-3.5 level of performance.
143
+
144
+ ![fig_sea_bench_side_by_side.png](fig_sea_bench_side_by_side.png)
145
+
146
+ Refer to [sea_bench/seallm_7b_v2.jsonl](https://huggingface.co/SeaLLMs/SeaLLM-7B-v2/blob/main/evaluation/sea_bench/seallm_7b_v2.jsonl) for the Sea-bench predictions of SeaLLM-7B-v2.
147
+
148
+
149
+ ### Usage
150
+
151
+ #### Instruction format
152
+
153
+ ```python
154
+ prompt = """<|im_start|>system
155
+ You are a helpful assistant.</s><|im_start|>user
156
+ Hello world</s><|im_start|>assistant
157
+ Hi there, how can I help?</s>"""
158
+
159
+ # NOTE: previous commit has \n between </s> and <|im_start|>, that was incorrect!
160
+ # <|im_start|> is not a special token.
161
+ # Transformers chat_template should be consistent with vLLM format below.
162
+
163
+ # ! ENSURE 1 and only 1 bos `<s>` at the beginning of sequence
164
+ print(tokenizer.convert_ids_to_tokens(tokenizer.encode(prompt)))
165
+
166
+ '<s>', '▁<', '|', 'im', '_', 'start', '|', '>', 'system', '<0x0A>', 'You', '▁are', '▁a', '▁helpful', '▁assistant', '.', '</s>', '▁<', '|', 'im', '_', 'start', '|', '>', 'user', '<0x0A>', 'Hello', '▁world', '</s>', '▁<', '|', 'im', '_', 'start', '|', '>', 'ass', 'istant', '<0x0A>', 'Hi', '▁there', ',', '▁how', '▁can', '▁I', '▁help', '?', '</s>']
167
+ """
168
+ ```
169
+
170
+ #### Using transformers's chat_template
171
+ ```python
172
+
173
+ from transformers import AutoModelForCausalLM, AutoTokenizer
174
+
175
+ device = "cuda" # the device to load the model onto
176
+
177
+ # use bfloat16 to ensure the best performance.
178
+ model = AutoModelForCausalLM.from_pretrained("SeaLLMs/SeaLLM-7B-v2", torch_dtype=torch.bfloat16, device_map=device)
179
+ tokenizer = AutoTokenizer.from_pretrained("SeaLLMs/SeaLLM-7B-v2")
180
+
181
+ messages = [
182
+ {"role": "system", "content": "You are a helpful assistant."},
183
+ {"role": "user", "content": "Hello world"},
184
+ {"role": "assistant", "content": "Hi there, how can I help you today?"},
185
+ {"role": "user", "content": "Explain general relativity in details."}
186
+ ]
187
+
188
+ encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt", add_generation_prompt=True)
189
+ print(tokenizer.convert_ids_to_tokens(encodeds[0]))
190
+ # ['<s>', '▁<', '|', 'im', '_', 'start', '|', '>', 'system', '<0x0A>', 'You', '▁are', '▁a', '▁helpful', '▁assistant', '.', '</s>', '▁<', '|', 'im', '_', 'start', '|', '>', 'user', '<0x0A>', 'Hello', '▁world', '</s>', '▁<', '|', 'im', '_', 'start', '|', '>', 'ass', 'istant', '<0x0A>', 'Hi', '▁there', ',', '▁how', '▁can', '▁I', '▁help', '▁you', '▁today', '?', '</s>', '▁<', '|', 'im', '_', 'start', '|', '>', 'user', '<0x0A>', 'Ex', 'plain', '▁general', '▁rel', 'ativity', '▁in', '▁details', '.', '</s>', '▁<', '|', 'im', '_', 'start', '|', '>', 'ass', 'istant', '<0x0A>']
191
+
192
+ model_inputs = encodeds.to(device)
193
+ model.to(device)
194
+
195
+ generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True, pad_token_id=tokenizer.pad_token_id)
196
+ decoded = tokenizer.batch_decode(generated_ids)
197
+ print(decoded[0])
198
+
199
+ ```
200
+
201
+ #### Using vLLM
202
+
203
+ ```python
204
+ from vllm import LLM, SamplingParams
205
+ TURN_TEMPLATE = "<|im_start|>{role}\n{content}</s>"
206
+ TURN_PREFIX = "<|im_start|>{role}\n"
207
+
208
+ # There is no \n between </s> and <|im_start|>.
209
+
210
+ def seallm_chat_convo_format(conversations, add_assistant_prefix: bool, system_prompt=None):
211
+ # conversations: list of dict with key `role` and `content` (openai format)
212
+ if conversations[0]['role'] != 'system' and system_prompt is not None:
213
+ conversations = [{"role": "system", "content": system_prompt}] + conversations
214
+ text = ''
215
+ for turn_id, turn in enumerate(conversations):
216
+ prompt = TURN_TEMPLATE.format(role=turn['role'], content=turn['content'])
217
+ text += prompt
218
+ if add_assistant_prefix:
219
+ prompt = TURN_PREFIX.format(role='assistant')
220
+ text += prompt
221
+ return text
222
+
223
+ sparams = SamplingParams(temperature=0.1, max_tokens=1024, stop=['</s>', '<|im_start|>'])
224
+ llm = LLM("SeaLLMs/SeaLLM-7B-v2", dtype="bfloat16")
225
+
226
+ message = "Explain general relativity in details."
227
+ prompt = seallm_chat_convo_format(message, True)
228
+ gen = llm.generate(prompt, sampling_params)
229
+
230
+ print(gen[0].outputs[0].text)
231
+ ```
232
+
233
+ #### Fine-tuning SeaLLM-7B-v2
234
+
235
+ Should follow the chat format and accurately mask out source tokens. Here is an example.
236
+
237
+ ```python
238
+ conversations = [
239
+ {"role": "system", "content": "You are helful assistant."},
240
+ {"role": "user", "content": "Hello world."},
241
+ {"role": "assistant", "content": "Hi there, how can I help?"},
242
+ {"role": "user", "content": "Tell me a joke."},
243
+ {"role": "assistant", "content": "Why don't scientists trust atoms? Because they make up everything."},
244
+ ]
245
+ def seallm_7b_v2_tokenize_multi_turns(tokenizer, conversations, add_assistant_prefix=False):
246
+ """
247
+ Inputs:
248
+ conversations: list of dict following openai format, eg
249
+ conversations = [
250
+ {"role": "system", "content": "You are helful assistant."},
251
+ {"role": "user", "content": "Hello world."},
252
+ {"role": "assistant", "content": "Hi there, how can I help?"},
253
+ {"role": "user", "content": "Tell me a joke."},
254
+ {"role": "assistant", "content": "Why don't scientists trust atoms? Because they make up everything."},
255
+ ]
256
+ add_assistant_prefix: whether to add assistant_prefix, only for inference decoding
257
+ Outputs:
258
+ tokenize_output_sample, {
259
+ "input_ids": ...
260
+ "token_type_ids": 1 if train and 0 if masked out (not train)
261
+ }
262
+ During training, need to create a labels, with masked-out tokens = -100 to avoid loss computations.
263
+ labels = sample['input_ids'].clone()
264
+ labels[sample['token_type_ids'] == 0] = -100
265
+ """
266
+ TURN_TEMPLATE = "<|im_start|>{role}\n{content}</s>"
267
+ TURN_PREFIX = "<|im_start|>{role}\n"
268
+ sample = None
269
+ assistant_prefix_len = None
270
+ for turn_id, turn in enumerate(conversations):
271
+ prompt = TURN_TEMPLATE.format(role=turn['role'], content=turn['content'])
272
+ turn_sample = tokenizer(
273
+ prompt, padding=False, truncation=False, verbose=False, add_special_tokens=False,
274
+ return_token_type_ids=True,
275
+ )
276
+ if turn['role'] == 'assistant':
277
+ if assistant_prefix_len is None:
278
+ assistant_prefix_len = len(tokenizer.encode(TURN_PREFIX.format(role=turn['role']), add_special_tokens=False))
279
+ turn_sample['token_type_ids'][assistant_prefix_len:] = [1] * (len(turn_sample['input_ids']) - assistant_prefix_len)
280
+ if sample is None:
281
+ sample = turn_sample
282
+ else:
283
+ for k in turn_sample.keys():
284
+ sample[k].extend(turn_sample[k])
285
+ if add_assistant_prefix:
286
+ assistant_prefix_sample = tokenizer(
287
+ TURN_PREFIX.format(role="assistant"), padding=False, truncation=False, verbose=False, add_special_tokens=False,
288
+ return_token_type_ids=True,
289
+ )
290
+ for k in sample.keys():
291
+ sample[k].extend(assistant_prefix_sample[k])
292
+ if tokenizer.add_bos_token:
293
+ sample['input_ids'] = [tokenizer.bos_token_id] + sample['input_ids']
294
+ sample['attention_mask'] = [1] + sample['attention_mask']
295
+ sample['token_type_ids'] = [sample['token_type_ids'][0]] + sample['token_type_ids']
296
+ return sample
297
+
298
+ # ! testing
299
+ sample = seallm_7b_v2_tokenize_multi_turns(tokenizer, conversations)
300
+ print(tokenizer.convert_ids_to_tokens(sample['input_ids']))
301
+ print(sample['token_type_ids'])
302
+ # ['<s>', '▁<', '|', 'im', '_', 'start', '|', '>', 'system', '<0x0A>', 'You', '▁are', '▁hel', 'ful', '▁assistant', '.', '</s>', '▁<', '|', 'im', '_', 'start', '|', '>', 'user', '<0x0A>', 'Hello', '▁world', '.', '</s>', '▁<', '|', 'im', '_', 'start', '|', '>', 'ass', 'istant', '<0x0A>', 'Hi', '▁there', ',', '▁how', '▁can', '▁I', '▁help', '?', '</s>', '▁<', '|', 'im', '_', 'start', '|', '>', 'user', '<0x0A>', 'Tell', '▁me', '▁a', '▁joke', '.', '</s>', '▁<', '|', 'im', '_', 'start', '|', '>', 'ass', 'istant', '<0x0A>', 'Why', '▁don', "'", 't', '▁scientists', '▁trust', '▁atoms', '?', '▁Because', '▁they', '▁make', '▁up', '▁everything', '.', '</s>']
303
+ # [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
304
+
305
+
306
+
307
+ ```
308
+
309
+
310
+ ## Acknowledgement to Our Linguists
311
+
312
+ We would like to express our special thanks to our professional and native linguists, Tantong Champaiboon, Nguyen Ngoc Yen Nhi and Tara Devina Putri, who helped build, evaluate, and fact-check our sampled pretraining and SFT dataset as well as evaluating our models across different aspects, especially safety.
313
+
314
+ ## Citation
315
+
316
+ If you find our project useful, we hope you would kindly star our repo and cite our work as follows: Corresponding Author: [[email protected]](mailto:[email protected])
317
+
318
+ **Author list and order will change!**
319
+
320
+ * `*` and `^` are equal contributions.
321
+
322
+ ```
323
+ @article{damonlpsg2023seallm,
324
+ author = {Xuan-Phi Nguyen*, Wenxuan Zhang*, Xin Li*, Mahani Aljunied*,
325
+ Zhiqiang Hu, Chenhui Shen^, Yew Ken Chia^, Xingxuan Li, Jianyu Wang,
326
+ Qingyu Tan, Liying Cheng, Guanzheng Chen, Yue Deng, Sen Yang,
327
+ Chaoqun Liu, Hang Zhang, Lidong Bing},
328
+ title = {SeaLLMs - Large Language Models for Southeast Asia},
329
+ year = 2023,
330
+ Eprint = {arXiv:2312.00738},
331
+ }
332
+ ```
333
+