--- library_name: transformers tags: - mergekit - merge base_model: - meditsolutions/Llama-3.1-MedIT-SUN-8B - allenai/Llama-3.1-Tulu-3-8B - arcee-ai/Llama-3.1-SuperNova-Lite model-index: - name: Tulu-3.1-8B-SuperNova results: - task: type: text-generation name: Text Generation dataset: name: IFEval (0-Shot) type: HuggingFaceH4/ifeval args: num_few_shot: 0 metrics: - type: inst_level_strict_acc and prompt_level_strict_acc value: 81.94 name: strict accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=bunnycore/Tulu-3.1-8B-SuperNova name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BBH (3-Shot) type: BBH args: num_few_shot: 3 metrics: - type: acc_norm value: 32.5 name: normalized accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=bunnycore/Tulu-3.1-8B-SuperNova name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MATH Lvl 5 (4-Shot) type: hendrycks/competition_math args: num_few_shot: 4 metrics: - type: exact_match value: 24.32 name: exact match source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=bunnycore/Tulu-3.1-8B-SuperNova name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GPQA (0-shot) type: Idavidrein/gpqa args: num_few_shot: 0 metrics: - type: acc_norm value: 6.94 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=bunnycore/Tulu-3.1-8B-SuperNova name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MuSR (0-shot) type: TAUR-Lab/MuSR args: num_few_shot: 0 metrics: - type: acc_norm value: 8.69 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=bunnycore/Tulu-3.1-8B-SuperNova name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU-PRO (5-shot) type: TIGER-Lab/MMLU-Pro config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 31.27 name: accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=bunnycore/Tulu-3.1-8B-SuperNova name: Open LLM Leaderboard --- [![QuantFactory Banner](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ)](https://hf.co/QuantFactory) # QuantFactory/Tulu-3.1-8B-SuperNova-GGUF This is quantized version of [bunnycore/Tulu-3.1-8B-SuperNova](https://huggingface.co/bunnycore/Tulu-3.1-8B-SuperNova) created using llama.cpp # Original Model Card # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [linear](https://arxiv.org/abs/2203.05482) merge method. ### Models Merged The following models were included in the merge: * [meditsolutions/Llama-3.1-MedIT-SUN-8B](https://huggingface.co/meditsolutions/Llama-3.1-MedIT-SUN-8B) * [allenai/Llama-3.1-Tulu-3-8B](https://huggingface.co/allenai/Llama-3.1-Tulu-3-8B) * [arcee-ai/Llama-3.1-SuperNova-Lite](https://huggingface.co/arcee-ai/Llama-3.1-SuperNova-Lite) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: arcee-ai/Llama-3.1-SuperNova-Lite parameters: weight: 1.0 - model: allenai/Llama-3.1-Tulu-3-8B parameters: weight: 1.0 - model: meditsolutions/Llama-3.1-MedIT-SUN-8B parameters: weight: 1.0 merge_method: linear normalize: false int8_mask: true dtype: bfloat16 ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_bunnycore__Tulu-3.1-8B-SuperNova) | Metric |Value| |-------------------|----:| |Avg. |30.94| |IFEval (0-Shot) |81.94| |BBH (3-Shot) |32.50| |MATH Lvl 5 (4-Shot)|24.32| |GPQA (0-shot) | 6.94| |MuSR (0-shot) | 8.69| |MMLU-PRO (5-shot) |31.27|