File size: 7,173 Bytes
efd140b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 |
---
license: apache-2.0
library_name: transformers
tags:
- mergekit
- merge
base_model:
- mistralai/Mistral-7B-Instruct-v0.2
model-index:
- name: bigstral-12b-32k
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 41.94
name: strict accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=abacusai/bigstral-12b-32k
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 25.56
name: normalized accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=abacusai/bigstral-12b-32k
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 0.98
name: exact match
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=abacusai/bigstral-12b-32k
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 5.7
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=abacusai/bigstral-12b-32k
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 15.86
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=abacusai/bigstral-12b-32k
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 18.24
name: accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=abacusai/bigstral-12b-32k
name: Open LLM Leaderboard
---
[![QuantFactory Banner](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ)](https://hf.co/QuantFactory)
# QuantFactory/bigstral-12b-32k-GGUF
This is quantized version of [abacusai/bigstral-12b-32k](https://huggingface.co/abacusai/bigstral-12b-32k) created using llama.cpp
# Original Model Card
# bigstral-12b-32k
`ollama run ehartford/bigstral`
I reached for SOLAR but realized that its only 4k... Decided to make my own 32k version.
This is [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) with layers interleaved to create a larger 12b model.
This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).
## Prompt Format
```
<s>[INST] What is your favourite condiment? [/INST]
Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!</s>
[INST] Do you have dangerously spicy mayonnaise recipes? [/INST]
```
## Example Output
give me some code that is very simple in javascript but would be very difficult in ANSI-C
> In JavaScript, functions are first-class values, which means you can assign them to variables, pass them as arguments to other functions, and even nest them inside other functions. This leads to concise and expressive code.
>
> Here's an example of a simple recursive function that calculates the factorial of a given number in JavaScript:
>
> ```javascript
> const factorial = n => n === 0 ? 1 : n * factorial(n - 1);
>
> console.log(factorial(5)); // Output: 120
>
> ```
>
> Now, let's try to write an equivalent code snippet in ANSI-C with similar functionality:
>
> ```c
> #include <stdio.h>
> #define MAX_RECURSION_DEPTH 1000
> int factorial(int n) {
> if (n == 0)
> return 1;
> else {
> int result;
> result = factorial(--n);
> if (++depth > MAX_RECURSION_DEPTH)
> while(1){} // Recursion stack overflow
> return n * result;
> }
> }
> int main() {
> int i, result;
> int n = 5;
> int depth = 0;
>
> result = factorial(n);
> printf("Factorial of %d is: %d\n", n, result);
> return 0;
> }
> ```
>
> As you can see, the ANSI-C code becomes more verbose and has several disadvantages compared to JavaScript:
>
> 1. Need to define a maximum recursion depth using a constant or an array index, which can lead to hardcoded limits and potential stack overflow issues.
> 2. The use of preprocessor directives (#define) for defining functions and macros can make the code less readable and harder to understand.
> 3. The lack of closures in ANSI-C requires using static variables or passing arguments as arguments to nested functions, making the code more verbose and less concise.
> ```
## Merge Details
### Merge Method
This model was merged using the passthrough merge method.
### Models Merged
The following models were included in the merge:
* [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2)
### Configuration
The following YAML configuration was used to produce this model:
```yaml
dtype: float16
merge_method: passthrough
slices:
- sources:
- layer_range: [0, 8]
model: mistralai/Mistral-7B-Instruct-v0.2
- sources:
- layer_range: [4, 12]
model: mistralai/Mistral-7B-Instruct-v0.2
- sources:
- layer_range: [8, 16]
model: mistralai/Mistral-7B-Instruct-v0.2
- sources:
- layer_range: [12, 20]
model: mistralai/Mistral-7B-Instruct-v0.2
- sources:
- layer_range: [16, 24]
model: mistralai/Mistral-7B-Instruct-v0.2
- sources:
- layer_range: [20, 28]
model: mistralai/Mistral-7B-Instruct-v0.2
- sources:
- layer_range: [24, 32]
model: mistralai/Mistral-7B-Instruct-v0.2
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_abacusai__bigstral-12b-32k)
| Metric |Value|
|-------------------|----:|
|Avg. |18.05|
|IFEval (0-Shot) |41.94|
|BBH (3-Shot) |25.56|
|MATH Lvl 5 (4-Shot)| 0.98|
|GPQA (0-shot) | 5.70|
|MuSR (0-shot) |15.86|
|MMLU-PRO (5-shot) |18.24|
|