--- pipeline_tag: text-generation base_model: gemma-2-Ifable-9B library_name: transformers --- [![QuantFactory Banner](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ)](https://hf.co/QuantFactory) # QuantFactory/gemma-2-Ifable-9B-GGUF This is quantized version of [ifable/gemma-2-Ifable-9B](https://huggingface.co/ifable/gemma-2-Ifable-9B) created using llama.cpp # Original Model Card # ifable/gemma-2-Ifable-9B ## Training and evaluation data - Gutenberg: https://huggingface.co/datasets/jondurbin/gutenberg-dpo-v0.1 - Carefully curated proprietary creative writing dataset ## Training procedure Training method: SimPO (GitHub - princeton-nlp/SimPO: SimPO: Simple Preference Optimization with a Reference-Free Reward) It achieves the following results on the evaluation set: - Loss: 1.0163 - Rewards/chosen: -21.6822 - Rewards/rejected: -47.8754 - Rewards/accuracies: 0.9167 - Rewards/margins: 26.1931 - Logps/rejected: -4.7875 - Logps/chosen: -2.1682 - Logits/rejected: -17.0475 - Logits/chosen: -12.0041 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-07 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | Sft Loss | |:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|:--------:| | 1.4444 | 0.9807 | 35 | 1.0163 | -21.6822 | -47.8754 | 0.9167 | 26.1931 | -4.7875 | -2.1682 | -17.0475 | -12.0041 | 0.0184 | ### Framework versions - Transformers 4.43.4 - Pytorch 2.3.0a0+ebedce2 - Datasets 2.20.0 - Tokenizers 0.19.1 We are looking for product manager and operations managers to build applications through our model, and also open for business cooperation, and also AI engineer to join us, contact with : contact@ifable.ai