munish0838 commited on
Commit
612bcec
·
verified ·
1 Parent(s): 4362cba

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +189 -0
README.md ADDED
@@ -0,0 +1,189 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ ---
3
+
4
+ pipeline_tag: text-generation
5
+ inference: false
6
+ license: apache-2.0
7
+ datasets:
8
+ - bigcode/commitpackft
9
+ - TIGER-Lab/MathInstruct
10
+ - meta-math/MetaMathQA
11
+ - glaiveai/glaive-code-assistant-v3
12
+ - glaive-function-calling-v2
13
+ - bugdaryan/sql-create-context-instruction
14
+ - garage-bAInd/Open-Platypus
15
+ - nvidia/HelpSteer
16
+ - bigcode/self-oss-instruct-sc2-exec-filter-50k
17
+ metrics:
18
+ - code_eval
19
+ library_name: transformers
20
+ tags:
21
+ - code
22
+ - granite
23
+ model-index:
24
+ - name: granite-8B-Code-instruct-128k
25
+ results:
26
+ - task:
27
+ type: text-generation
28
+ dataset:
29
+ type: bigcode/humanevalpack
30
+ name: HumanEvalSynthesis (Python)
31
+ metrics:
32
+ - name: pass@1
33
+ type: pass@1
34
+ value: 62.2
35
+ verified: false
36
+ - task:
37
+ type: text-generation
38
+ dataset:
39
+ type: bigcode/humanevalpack
40
+ name: HumanEvalSynthesis (Average)
41
+ metrics:
42
+ - name: pass@1
43
+ type: pass@1
44
+ value: 51.4
45
+ verified: false
46
+ - task:
47
+ type: text-generation
48
+ dataset:
49
+ type: bigcode/humanevalpack
50
+ name: HumanEvalExplain (Average)
51
+ metrics:
52
+ - name: pass@1
53
+ type: pass@1
54
+ value: 38.9
55
+ verified: false
56
+ - task:
57
+ type: text-generation
58
+ dataset:
59
+ type: bigcode/humanevalpack
60
+ name: HumanEvalFix (Average)
61
+ metrics:
62
+ - name: pass@1
63
+ type: pass@1
64
+ value: 38.3
65
+ verified: false
66
+ - task:
67
+ type: text-generation
68
+ dataset:
69
+ type: repoqa
70
+ name: RepoQA (Python@16K)
71
+ metrics:
72
+ - name: pass@1 (thresh=0.5)
73
+ type: pass@1 (thresh=0.5)
74
+ value: 73.0
75
+ verified: false
76
+ - task:
77
+ type: text-generation
78
+ dataset:
79
+ type: repoqa
80
+ name: RepoQA (C++@16K)
81
+ metrics:
82
+ - name: pass@1 (thresh=0.5)
83
+ type: pass@1 (thresh=0.5)
84
+ value: 37.0
85
+ verified: false
86
+ - task:
87
+ type: text-generation
88
+ dataset:
89
+ type: repoqa
90
+ name: RepoQA (Java@16K)
91
+ metrics:
92
+ - name: pass@1 (thresh=0.5)
93
+ type: pass@1 (thresh=0.5)
94
+ value: 73.0
95
+ verified: false
96
+ - task:
97
+ type: text-generation
98
+ dataset:
99
+ type: repoqa
100
+ name: RepoQA (TypeScript@16K)
101
+ metrics:
102
+ - name: pass@1 (thresh=0.5)
103
+ type: pass@1 (thresh=0.5)
104
+ value: 62.0
105
+ verified: false
106
+ - task:
107
+ type: text-generation
108
+ dataset:
109
+ type: repoqa
110
+ name: RepoQA (Rust@16K)
111
+ metrics:
112
+ - name: pass@1 (thresh=0.5)
113
+ type: pass@1 (thresh=0.5)
114
+ value: 63.0
115
+ verified: false
116
+
117
+ ---
118
+
119
+ ![](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ)
120
+
121
+ # QuantFactory/granite-8b-code-instruct-128k-GGUF
122
+ This is quantized version of [ibm-granite/granite-8b-code-instruct-128k](https://huggingface.co/ibm-granite/granite-8b-code-instruct-128k) created using llama.cpp
123
+
124
+ # Original Model Card
125
+
126
+
127
+
128
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/62cd5057674cdb524450093d/1hzxoPwqkBJXshKVVe6_9.png)
129
+
130
+ # Granite-8B-Code-Instruct-128K
131
+
132
+ ## Model Summary
133
+ **Granite-8B-Code-Instruct-128K** is a 8B parameter long-context instruct model fine tuned from *Granite-8B-Code-Base-128K* on a combination of **permissively licensed** data used in training the original Granite code instruct models, in addition to synthetically generated code instruction datasets tailored for solving long context problems. By exposing the model to both short and long context data, we aim to enhance its long-context capability without sacrificing code generation performance at short input context.
134
+
135
+ - **Developers:** IBM Research
136
+ - **GitHub Repository:** [ibm-granite/granite-code-models](https://github.com/ibm-granite/granite-code-models)
137
+ - **Paper:** [Scaling Granite Code Models to 128K Context](https://arxiv.org/abs/2407.13739)
138
+ - **Release Date**: July 18th, 2024
139
+ - **License:** [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0).
140
+
141
+ ## Usage
142
+ ### Intended use
143
+ The model is designed to respond to coding related instructions over long-conext input up to 128K length and can be used to build coding assistants.
144
+
145
+ <!-- TO DO: Check starcoder2 instruct code example that includes the template https://huggingface.co/bigcode/starcoder2-15b-instruct-v0.1 -->
146
+
147
+ ### Generation
148
+ This is a simple example of how to use **Granite-8B-Code-Instruct** model.
149
+
150
+ ```python
151
+ import torch
152
+ from transformers import AutoModelForCausalLM, AutoTokenizer
153
+ device = "cuda" # or "cpu"
154
+ model_path = "ibm-granite/granite-8B-Code-instruct-128k"
155
+ tokenizer = AutoTokenizer.from_pretrained(model_path)
156
+ # drop device_map if running on CPU
157
+ model = AutoModelForCausalLM.from_pretrained(model_path, device_map=device)
158
+ model.eval()
159
+ # change input text as desired
160
+ chat = [
161
+ { "role": "user", "content": "Write a code to find the maximum value in a list of numbers." },
162
+ ]
163
+ chat = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
164
+ # tokenize the text
165
+ input_tokens = tokenizer(chat, return_tensors="pt")
166
+ # transfer tokenized inputs to the device
167
+ for i in input_tokens:
168
+ input_tokens[i] = input_tokens[i].to(device)
169
+ # generate output tokens
170
+ output = model.generate(**input_tokens, max_new_tokens=100)
171
+ # decode output tokens into text
172
+ output = tokenizer.batch_decode(output)
173
+ # loop over the batch to print, in this example the batch size is 1
174
+ for i in output:
175
+ print(i)
176
+ ```
177
+
178
+ <!-- TO DO: Check this part -->
179
+ ## Training Data
180
+ Granite Code Instruct models are trained on a mix of short and long context data as follows.
181
+ * Short-Context Instruction Data: [CommitPackFT](https://huggingface.co/datasets/bigcode/commitpackft), [BigCode-SC2-Instruct](bigcode/self-oss-instruct-sc2-exec-filter-50k), [MathInstruct](https://huggingface.co/datasets/TIGER-Lab/MathInstruct), [MetaMathQA](https://huggingface.co/datasets/meta-math/MetaMathQA), [Glaive-Code-Assistant-v3](https://huggingface.co/datasets/glaiveai/glaive-code-assistant-v3), [Glaive-Function-Calling-v2](https://huggingface.co/datasets/glaiveai/glaive-function-calling-v2), [NL2SQL11](https://huggingface.co/datasets/bugdaryan/sql-create-context-instruction), [HelpSteer](https://huggingface.co/datasets/nvidia/HelpSteer), [OpenPlatypus](https://huggingface.co/datasets/garage-bAInd/Open-Platypus) including a synthetically generated dataset for API calling and multi-turn code interactions with execution feedback. We also include a collection of hardcoded prompts to ensure our model generates correct outputs given inquiries about its name or developers.
182
+ * Long-Context Instruction Data: A synthetically-generated dataset by bootstrapping the repository-level file-packed documents through Granite-8b-Code-Instruct to improve long-context capability of the model.
183
+
184
+ ## Infrastructure
185
+ We train the Granite Code models using two of IBM's super computing clusters, namely Vela and Blue Vela, both outfitted with NVIDIA A100 and H100 GPUs respectively. These clusters provide a scalable and efficient infrastructure for training our models over thousands of GPUs.
186
+
187
+ ## Ethical Considerations and Limitations
188
+ Granite code instruct models are primarily finetuned using instruction-response pairs across a specific set of programming languages. Thus, their performance may be limited with out-of-domain programming languages. In this situation, it is beneficial providing few-shot examples to steer the model's output. Moreover, developers should perform safety testing and target-specific tuning before deploying these models on critical applications. The model also inherits ethical considerations and limitations from its base model. For more information, please refer to *[Granite-8B-Code-Base-128K](https://huggingface.co/ibm-granite/granite-8B-Code-base-128k)* model card.
189
+