munish0838 commited on
Commit
355cb83
1 Parent(s): fc5f9a3

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +280 -0
README.md ADDED
@@ -0,0 +1,280 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ ---
3
+
4
+ pipeline_tag: text-generation
5
+ base_model: ibm-granite/granite-8b-code-base-4k
6
+ inference: false
7
+ license: apache-2.0
8
+ datasets:
9
+ - bigcode/commitpackft
10
+ - TIGER-Lab/MathInstruct
11
+ - meta-math/MetaMathQA
12
+ - glaiveai/glaive-code-assistant-v3
13
+ - glaive-function-calling-v2
14
+ - bugdaryan/sql-create-context-instruction
15
+ - garage-bAInd/Open-Platypus
16
+ - nvidia/HelpSteer
17
+ metrics:
18
+ - code_eval
19
+ library_name: transformers
20
+ tags:
21
+ - code
22
+ - granite
23
+ model-index:
24
+ - name: granite-8b-code-instruct-4k
25
+ results:
26
+ - task:
27
+ type: text-generation
28
+ dataset:
29
+ type: bigcode/humanevalpack
30
+ name: HumanEvalSynthesis(Python)
31
+ metrics:
32
+ - name: pass@1
33
+ type: pass@1
34
+ value: 57.9
35
+ veriefied: false
36
+ - task:
37
+ type: text-generation
38
+ dataset:
39
+ type: bigcode/humanevalpack
40
+ name: HumanEvalSynthesis(JavaScript)
41
+ metrics:
42
+ - name: pass@1
43
+ type: pass@1
44
+ value: 52.4
45
+ veriefied: false
46
+ - task:
47
+ type: text-generation
48
+ dataset:
49
+ type: bigcode/humanevalpack
50
+ name: HumanEvalSynthesis(Java)
51
+ metrics:
52
+ - name: pass@1
53
+ type: pass@1
54
+ value: 58.5
55
+ veriefied: false
56
+ - task:
57
+ type: text-generation
58
+ dataset:
59
+ type: bigcode/humanevalpack
60
+ name: HumanEvalSynthesis(Go)
61
+ metrics:
62
+ - name: pass@1
63
+ type: pass@1
64
+ value: 43.3
65
+ veriefied: false
66
+ - task:
67
+ type: text-generation
68
+ dataset:
69
+ type: bigcode/humanevalpack
70
+ name: HumanEvalSynthesis(C++)
71
+ metrics:
72
+ - name: pass@1
73
+ type: pass@1
74
+ value: 48.2
75
+ veriefied: false
76
+ - task:
77
+ type: text-generation
78
+ dataset:
79
+ type: bigcode/humanevalpack
80
+ name: HumanEvalSynthesis(Rust)
81
+ metrics:
82
+ - name: pass@1
83
+ type: pass@1
84
+ value: 37.2
85
+ veriefied: false
86
+ - task:
87
+ type: text-generation
88
+ dataset:
89
+ type: bigcode/humanevalpack
90
+ name: HumanEvalExplain(Python)
91
+ metrics:
92
+ - name: pass@1
93
+ type: pass@1
94
+ value: 53.0
95
+ veriefied: false
96
+ - task:
97
+ type: text-generation
98
+ dataset:
99
+ type: bigcode/humanevalpack
100
+ name: HumanEvalExplain(JavaScript)
101
+ metrics:
102
+ - name: pass@1
103
+ type: pass@1
104
+ value: 42.7
105
+ veriefied: false
106
+ - task:
107
+ type: text-generation
108
+ dataset:
109
+ type: bigcode/humanevalpack
110
+ name: HumanEvalExplain(Java)
111
+ metrics:
112
+ - name: pass@1
113
+ type: pass@1
114
+ value: 52.4
115
+ veriefied: false
116
+ - task:
117
+ type: text-generation
118
+ dataset:
119
+ type: bigcode/humanevalpack
120
+ name: HumanEvalExplain(Go)
121
+ metrics:
122
+ - name: pass@1
123
+ type: pass@1
124
+ value: 36.6
125
+ veriefied: false
126
+ - task:
127
+ type: text-generation
128
+ dataset:
129
+ type: bigcode/humanevalpack
130
+ name: HumanEvalExplain(C++)
131
+ metrics:
132
+ - name: pass@1
133
+ type: pass@1
134
+ value: 43.9
135
+ veriefied: false
136
+ - task:
137
+ type: text-generation
138
+ dataset:
139
+ type: bigcode/humanevalpack
140
+ name: HumanEvalExplain(Rust)
141
+ metrics:
142
+ - name: pass@1
143
+ type: pass@1
144
+ value: 16.5
145
+ veriefied: false
146
+ - task:
147
+ type: text-generation
148
+ dataset:
149
+ type: bigcode/humanevalpack
150
+ name: HumanEvalFix(Python)
151
+ metrics:
152
+ - name: pass@1
153
+ type: pass@1
154
+ value: 39.6
155
+ veriefied: false
156
+ - task:
157
+ type: text-generation
158
+ dataset:
159
+ type: bigcode/humanevalpack
160
+ name: HumanEvalFix(JavaScript)
161
+ metrics:
162
+ - name: pass@1
163
+ type: pass@1
164
+ value: 40.9
165
+ veriefied: false
166
+ - task:
167
+ type: text-generation
168
+ dataset:
169
+ type: bigcode/humanevalpack
170
+ name: HumanEvalFix(Java)
171
+ metrics:
172
+ - name: pass@1
173
+ type: pass@1
174
+ value: 48.2
175
+ veriefied: false
176
+ - task:
177
+ type: text-generation
178
+ dataset:
179
+ type: bigcode/humanevalpack
180
+ name: HumanEvalFix(Go)
181
+ metrics:
182
+ - name: pass@1
183
+ type: pass@1
184
+ value: 41.5
185
+ veriefied: false
186
+ - task:
187
+ type: text-generation
188
+ dataset:
189
+ type: bigcode/humanevalpack
190
+ name: HumanEvalFix(C++)
191
+ metrics:
192
+ - name: pass@1
193
+ type: pass@1
194
+ value: 39.0
195
+ veriefied: false
196
+ - task:
197
+ type: text-generation
198
+ dataset:
199
+ type: bigcode/humanevalpack
200
+ name: HumanEvalFix(Rust)
201
+ metrics:
202
+ - name: pass@1
203
+ type: pass@1
204
+ value: 32.9
205
+ veriefied: false
206
+
207
+ ---
208
+
209
+ ![](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ)
210
+
211
+ # QuantFactory/granite-8b-code-instruct-4k-GGUF
212
+ This is quantized version of [ibm-granite/granite-8b-code-instruct-4k](https://huggingface.co/ibm-granite/granite-8b-code-instruct-4k) created using llama.cpp
213
+
214
+ # Original Model Card
215
+
216
+
217
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/62cd5057674cdb524450093d/1hzxoPwqkBJXshKVVe6_9.png)
218
+
219
+ # Granite-8B-Code-Instruct-4K
220
+
221
+ ## Model Summary
222
+ **Granite-8B-Code-Instruct-4K** is a 8B parameter model fine tuned from *Granite-8B-Code-Base-4K* on a combination of **permissively licensed** instruction data to enhance instruction following capabilities including logical reasoning and problem-solving skills.
223
+
224
+ - **Developers:** IBM Research
225
+ - **GitHub Repository:** [ibm-granite/granite-code-models](https://github.com/ibm-granite/granite-code-models)
226
+ - **Paper:** [Granite Code Models: A Family of Open Foundation Models for Code Intelligence](https://arxiv.org/abs/2405.04324)
227
+ - **Release Date**: May 6th, 2024
228
+ - **License:** [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0).
229
+
230
+ ## Usage
231
+ ### Intended use
232
+ The model is designed to respond to coding related instructions and can be used to build coding assistants.
233
+
234
+ <!-- TO DO: Check starcoder2 instruct code example that includes the template https://huggingface.co/bigcode/starcoder2-15b-instruct-v0.1 -->
235
+
236
+ ### Generation
237
+ This is a simple example of how to use **Granite-8B-Code-Instruct-4K** model.
238
+
239
+ ```python
240
+ import torch
241
+ from transformers import AutoModelForCausalLM, AutoTokenizer
242
+ device = "cuda" # or "cpu"
243
+ model_path = "ibm-granite/granite-8b-code-instruct-4k"
244
+ tokenizer = AutoTokenizer.from_pretrained(model_path)
245
+ # drop device_map if running on CPU
246
+ model = AutoModelForCausalLM.from_pretrained(model_path, device_map=device)
247
+ model.eval()
248
+ # change input text as desired
249
+ chat = [
250
+ { "role": "user", "content": "Write a code to find the maximum value in a list of numbers." },
251
+ ]
252
+ chat = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
253
+ # tokenize the text
254
+ input_tokens = tokenizer(chat, return_tensors="pt")
255
+ # transfer tokenized inputs to the device
256
+ for i in input_tokens:
257
+ input_tokens[i] = input_tokens[i].to(device)
258
+ # generate output tokens
259
+ output = model.generate(**input_tokens, max_new_tokens=100)
260
+ # decode output tokens into text
261
+ output = tokenizer.batch_decode(output)
262
+ # loop over the batch to print, in this example the batch size is 1
263
+ for i in output:
264
+ print(i)
265
+ ```
266
+
267
+ <!-- TO DO: Check this part -->
268
+ ## Training Data
269
+ Granite Code Instruct models are trained on the following types of data.
270
+ * Code Commits Datasets: we sourced code commits data from the [CommitPackFT](https://huggingface.co/datasets/bigcode/commitpackft) dataset, a filtered version of the full CommitPack dataset. From CommitPackFT dataset, we only consider data for 92 programming languages. Our inclusion criteria boils down to selecting programming languages common across CommitPackFT and the 116 languages that we considered to pretrain the code-base model (*Granite-8B-Code-Base*).
271
+ * Math Datasets: We consider two high-quality math datasets, [MathInstruct](https://huggingface.co/datasets/TIGER-Lab/MathInstruct) and [MetaMathQA](https://huggingface.co/datasets/meta-math/MetaMathQA). Due to license issues, we filtered out GSM8K-RFT and Camel-Math from MathInstruct dataset.
272
+ * Code Instruction Datasets: We use [Glaive-Code-Assistant-v3](https://huggingface.co/datasets/glaiveai/glaive-code-assistant-v3), [Glaive-Function-Calling-v2](https://huggingface.co/datasets/glaiveai/glaive-function-calling-v2), [NL2SQL11](https://huggingface.co/datasets/bugdaryan/sql-create-context-instruction) and a small collection of synthetic API calling datasets.
273
+ * Language Instruction Datasets: We include high-quality datasets such as [HelpSteer](https://huggingface.co/datasets/nvidia/HelpSteer) and an open license-filtered version of [Platypus](https://huggingface.co/datasets/garage-bAInd/Open-Platypus). We also include a collection of hardcoded prompts to ensure our model generates correct outputs given inquiries about its name or developers.
274
+
275
+ ## Infrastructure
276
+ We train the Granite Code models using two of IBM's super computing clusters, namely Vela and Blue Vela, both outfitted with NVIDIA A100 and H100 GPUs respectively. These clusters provide a scalable and efficient infrastructure for training our models over thousands of GPUs.
277
+
278
+ ## Ethical Considerations and Limitations
279
+ Granite code instruct models are primarily finetuned using instruction-response pairs across a specific set of programming languages. Thus, their performance may be limited with out-of-domain programming languages. In this situation, it is beneficial providing few-shot examples to steer the model's output. Moreover, developers should perform safety testing and target-specific tuning before deploying these models on critical applications. The model also inherits ethical considerations and limitations from its base model. For more information, please refer to *[Granite-8B-Code-Base-4K](https://huggingface.co/ibm-granite/granite-8b-code-base-4k)* model card.
280
+