GGUF
English
causal-lm
Eval Results
Inference Endpoints
conversational
aashish1904 commited on
Commit
4921c99
·
verified ·
1 Parent(s): ed4d21f

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +285 -0
README.md ADDED
@@ -0,0 +1,285 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ ---
3
+
4
+ language:
5
+ - en
6
+ license: other
7
+ tags:
8
+ - causal-lm
9
+ datasets:
10
+ - HuggingFaceH4/ultrachat_200k
11
+ - HuggingFaceH4/ultrafeedback_binarized
12
+ - meta-math/MetaMathQA
13
+ - WizardLM/WizardLM_evol_instruct_V2_196k
14
+ - Intel/orca_dpo_pairs
15
+ extra_gated_fields:
16
+ Name: text
17
+ Email: text
18
+ Country: text
19
+ Organization or Affiliation: text
20
+ I ALLOW Stability AI to email me about new model releases: checkbox
21
+ model-index:
22
+ - name: stablelm-zephyr-3b
23
+ results:
24
+ - task:
25
+ type: text-generation
26
+ name: Text Generation
27
+ dataset:
28
+ name: AI2 Reasoning Challenge (25-Shot)
29
+ type: ai2_arc
30
+ config: ARC-Challenge
31
+ split: test
32
+ args:
33
+ num_few_shot: 25
34
+ metrics:
35
+ - type: acc_norm
36
+ value: 46.08
37
+ name: normalized accuracy
38
+ source:
39
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=stabilityai/stablelm-zephyr-3b
40
+ name: Open LLM Leaderboard
41
+ - task:
42
+ type: text-generation
43
+ name: Text Generation
44
+ dataset:
45
+ name: HellaSwag (10-Shot)
46
+ type: hellaswag
47
+ split: validation
48
+ args:
49
+ num_few_shot: 10
50
+ metrics:
51
+ - type: acc_norm
52
+ value: 74.16
53
+ name: normalized accuracy
54
+ source:
55
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=stabilityai/stablelm-zephyr-3b
56
+ name: Open LLM Leaderboard
57
+ - task:
58
+ type: text-generation
59
+ name: Text Generation
60
+ dataset:
61
+ name: MMLU (5-Shot)
62
+ type: cais/mmlu
63
+ config: all
64
+ split: test
65
+ args:
66
+ num_few_shot: 5
67
+ metrics:
68
+ - type: acc
69
+ value: 46.17
70
+ name: accuracy
71
+ source:
72
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=stabilityai/stablelm-zephyr-3b
73
+ name: Open LLM Leaderboard
74
+ - task:
75
+ type: text-generation
76
+ name: Text Generation
77
+ dataset:
78
+ name: TruthfulQA (0-shot)
79
+ type: truthful_qa
80
+ config: multiple_choice
81
+ split: validation
82
+ args:
83
+ num_few_shot: 0
84
+ metrics:
85
+ - type: mc2
86
+ value: 46.49
87
+ source:
88
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=stabilityai/stablelm-zephyr-3b
89
+ name: Open LLM Leaderboard
90
+ - task:
91
+ type: text-generation
92
+ name: Text Generation
93
+ dataset:
94
+ name: Winogrande (5-shot)
95
+ type: winogrande
96
+ config: winogrande_xl
97
+ split: validation
98
+ args:
99
+ num_few_shot: 5
100
+ metrics:
101
+ - type: acc
102
+ value: 65.51
103
+ name: accuracy
104
+ source:
105
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=stabilityai/stablelm-zephyr-3b
106
+ name: Open LLM Leaderboard
107
+ - task:
108
+ type: text-generation
109
+ name: Text Generation
110
+ dataset:
111
+ name: GSM8k (5-shot)
112
+ type: gsm8k
113
+ config: main
114
+ split: test
115
+ args:
116
+ num_few_shot: 5
117
+ metrics:
118
+ - type: acc
119
+ value: 42.15
120
+ name: accuracy
121
+ source:
122
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=stabilityai/stablelm-zephyr-3b
123
+ name: Open LLM Leaderboard
124
+
125
+ ---
126
+
127
+ [![QuantFactory Banner](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ)](https://hf.co/QuantFactory)
128
+
129
+
130
+ # QuantFactory/stablelm-zephyr-3b-GGUF
131
+ This is quantized version of [stabilityai/stablelm-zephyr-3b](https://huggingface.co/stabilityai/stablelm-zephyr-3b) created using llama.cpp
132
+
133
+ # Original Model Card
134
+
135
+ # `StableLM Zephyr 3B`
136
+
137
+ Please note: For commercial use, please refer to https://stability.ai/license.
138
+
139
+ ## Model Description
140
+
141
+ `StableLM Zephyr 3B` is a 3 billion parameter instruction tuned inspired by [HugginFaceH4's Zephyr 7B](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta) training pipeline this model was trained on a mix of publicly available datasets, synthetic datasets using [Direct Preference Optimization (DPO)](https://arxiv.org/abs/2305.18290), evaluation for this model based on
142
+ [MT Bench](https://arxiv.org/abs/2306.05685) and [Alpaca Benchmark](https://tatsu-lab.github.io/alpaca_eval/)
143
+
144
+ ## Usage
145
+
146
+ `StableLM Zephyr 3B` uses the following instruction format:
147
+ ```
148
+ <|user|>
149
+ List 3 synonyms for the word "tiny"<|endoftext|>
150
+ <|assistant|>
151
+ 1. Dwarf
152
+ 2. Little
153
+ 3. Petite<|endoftext|>
154
+ ```
155
+
156
+ This format is also available through the tokenizer's `apply_chat_template` method:
157
+
158
+ ```python
159
+ from transformers import AutoModelForCausalLM, AutoTokenizer
160
+
161
+ tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-zephyr-3b')
162
+ model = AutoModelForCausalLM.from_pretrained(
163
+ 'stabilityai/stablelm-zephyr-3b',
164
+ device_map="auto"
165
+ )
166
+
167
+ prompt = [{'role': 'user', 'content': 'List 3 synonyms for the word "tiny"'}]
168
+ inputs = tokenizer.apply_chat_template(
169
+ prompt,
170
+ add_generation_prompt=True,
171
+ return_tensors='pt'
172
+ )
173
+
174
+ tokens = model.generate(
175
+ inputs.to(model.device),
176
+ max_new_tokens=1024,
177
+ temperature=0.8,
178
+ do_sample=True
179
+ )
180
+
181
+ print(tokenizer.decode(tokens[0], skip_special_tokens=False))
182
+ ```
183
+
184
+ You can also see how to run a performance optimized version of this model [here](https://github.com/openvinotoolkit/openvino_notebooks/blob/main/notebooks/273-stable-zephyr-3b-chatbot/273-stable-zephyr-3b-chatbot.ipynb) using [OpenVINO](https://docs.openvino.ai/2023.2/home.html) from Intel.
185
+
186
+ ## Model Details
187
+
188
+ * **Developed by**: [Stability AI](https://stability.ai/)
189
+ * **Model type**: `StableLM Zephyr 3B` model is an auto-regressive language model based on the transformer decoder architecture.
190
+ * **Language(s)**: English
191
+ * **Library**: [Alignment Handbook](https://github.com/huggingface/alignment-handbook.git)
192
+ * **Finetuned from model**: [stabilityai/stablelm-3b-4e1t](https://huggingface.co/stabilityai/stablelm-3b-4e1t)
193
+ * **License**: [StabilityAI Community License](https://huggingface.co/stabilityai/stablelm-zephyr-3b/raw/main/LICENSE.md).
194
+ * **Commercial License**: to use this model commercially, please refer to https://stability.ai/license
195
+ * **Contact**: For questions and comments about the model, please email `[email protected]`
196
+
197
+ ### Training Dataset
198
+
199
+ The dataset is comprised of a mixture of open datasets large-scale datasets available on the [HuggingFace Hub](https://huggingface.co/datasets):
200
+ 1. SFT Datasets
201
+ - HuggingFaceH4/ultrachat_200k
202
+ - meta-math/MetaMathQA
203
+ - WizardLM/WizardLM_evol_instruct_V2_196k
204
+ - Open-Orca/SlimOrca
205
+ 2. Preference Datasets:
206
+ - HuggingFaceH4/ultrafeedback_binarized
207
+ - Intel/orca_dpo_pairs
208
+
209
+ ## Performance
210
+
211
+ ### MT-Bench and Alpaca Bench
212
+
213
+
214
+ <img src="https://cdn-uploads.huggingface.co/production/uploads/6310474ca119d49bc1eb0d80/8WIZS6dAlu5kSH-382pMl.png" alt="mt_bench_plot" width="600"/>
215
+
216
+ | Model | Size | Alignment | MT-Bench (score) | AlpacaEval (win rate %) |
217
+ |-------------|-----|----|---------------|--------------|
218
+ | **StableLM Zephyr 3B** 🪁 | 3B | DPO | 6.64 | 76.00 |
219
+ | StableLM Zephyr (SFT only) | 3B | SFT | 6.04 | 71.15 |
220
+ | Capybara v1.9 | 3B | dSFT | 5.94 | - |
221
+ | MPT-Chat | 7B |dSFT |5.42| -|
222
+ | Xwin-LM v0.1 | 7B| dPPO| 6.19| 87.83|
223
+ | Mistral-Instruct v0.1 | 7B| - | 6.84 |-|
224
+ | Zephyr-7b-α |7B| dDPO| 6.88| -|
225
+ | Zephyr-7b-β| 7B | dDPO | 7.34 | 90.60 |
226
+ | Falcon-Instruct | 40B |dSFT |5.17 |45.71|
227
+ | Guanaco | 65B | SFT |6.41| 71.80|
228
+ | Llama2-Chat | 70B |RLHF |6.86| 92.66|
229
+ | Vicuna v1.3 | 33B |dSFT |7.12 |88.99|
230
+ | WizardLM v1.0 | 70B |dSFT |7.71 |-|
231
+ | Xwin-LM v0.1 | 70B |dPPO |- |95.57|
232
+ | GPT-3.5-turbo | - |RLHF |7.94 |89.37|
233
+ | Claude 2 | - |RLHF |8.06| 91.36|
234
+ | GPT-4 | -| RLHF |8.99| 95.28|
235
+
236
+ ## Other benchmarks:
237
+ | Task | Value |
238
+ |-----------------------|---------------------------|
239
+ | ARC (25-shot) | 47.0 |
240
+ | HellaSwag (10-shot) | 74.2 |
241
+ | MMLU (5-shot) | 46.3 |
242
+ | TruthfulQA (0-shot) | 46.5 |
243
+ | Winogrande (5-shot) | 65.5 |
244
+ | GSM8K (5-shot) | 42.3 |
245
+ | BigBench (Avg) | 35.26 |
246
+ | AGI Benchmark (Avg) | 33.23 |
247
+
248
+ ### Training Infrastructure
249
+
250
+ * **Hardware**: `StableLM Zephyr 3B` was trained on the Stability AI cluster across 8 nodes with 8 A100 80GBs GPUs for each nodes.
251
+ * **Code Base**: We use our internal script for SFT steps and used [HuggingFace Alignment Handbook script](https://github.com/huggingface/alignment-handbook) for DPO training.
252
+
253
+ ## Commitment to Ethical AI
254
+ In line with our responsibility towards ethical AI development, `StableLM Zephyr 3B` is released with a focus on ensuring safety, reliability, and appropriateness in its applications. To this end, we have evaluated `StableLM Zephyr 3B` on 488 malicious prompts and used standard protocols to assess the harmfulness of its outputs. Compared to Zephyr-7b-β, `StableLM Zephyr 3B` reduces the number of harmful outputs as assessed by GPT-4 by 55. Additionally, we performed an internal red teaming event targeting the following abuse areas:
255
+ * **Self-Harm Methods**: (Suicide Methods, Encouragement of Self-Harm, Methods and encouragement of Eating Disorders)
256
+ * **Misinformation**: (Health, Conspiracy Theories, Social Unrest/Conflict, Political Misinformation, & Climate change)
257
+ * **Hate Speech**: (Race, Stereotypes, Immigrants, Gender, Personally Identifiable Information such as Social security numbers, Full names, ID numbers, Email addresses, and telephone numbers)
258
+
259
+ We have incorporated the findings of our malicious prompts evaluation and red teaming event into our release. Users are encouraged to fine-tune and evaluate the model to suit their specific needs, considering the potential biases and limitations found in `StableLM Zephyr 3B` and inherent in other LLM models.
260
+
261
+ ## Use and Limitations
262
+
263
+ ### Intended Use
264
+
265
+ The model is intended to be used as a foundational base model for application-specific fine-tuning. Developers must evaluate and fine-tune the model for safe performance in downstream applications. For commercial use, please refer to https://stability.ai/membership.
266
+
267
+ ### Limitations and Bias
268
+
269
+ This model is not trained against adversarial inputs. We strongly recommend pairing this model with an input and output classifier to prevent harmful responses.
270
+
271
+ Through our internal red teaming, we discovered that while the model will not output harmful information if not prompted to do so, it is willing to output potentially harmful outputs or misinformation when the user requests it. Using this model will require guardrails around your inputs and outputs to ensure that any outputs returned are not misinformation or harmful. Additionally, as each use case is unique, we recommend running your own suite of tests to ensure proper performance of this model. Finally, do not use the models if they are unsuitable for your application, or for any applications that may cause deliberate or unintentional harm to others.
272
+ # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
273
+ Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_stabilityai__stablelm-zephyr-3b)
274
+
275
+ | Metric |Value|
276
+ |---------------------------------|----:|
277
+ |Avg. |53.43|
278
+ |AI2 Reasoning Challenge (25-Shot)|46.08|
279
+ |HellaSwag (10-Shot) |74.16|
280
+ |MMLU (5-Shot) |46.17|
281
+ |TruthfulQA (0-shot) |46.49|
282
+ |Winogrande (5-shot) |65.51|
283
+ |GSM8k (5-shot) |42.15|
284
+
285
+