aashish1904 commited on
Commit
3dc4567
1 Parent(s): ba81c21

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +79 -0
README.md ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ ---
3
+
4
+ tags:
5
+ - code
6
+ - starcoder2
7
+ library_name: transformers
8
+ pipeline_tag: text-generation
9
+ license: bigcode-openrail-m
10
+
11
+ ---
12
+
13
+ [![QuantFactory Banner](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ)](https://hf.co/QuantFactory)
14
+
15
+
16
+ # QuantFactory/starcoder2-3b-instruct-GGUF
17
+ This is quantized version of [TechxGenus/starcoder2-3b-instruct](https://huggingface.co/TechxGenus/starcoder2-3b-instruct) created using llama.cpp
18
+
19
+ # Original Model Card
20
+
21
+
22
+ <p align="center">
23
+ <img width="300px" alt="starcoder2-instruct" src="https://huggingface.co/TechxGenus/starcoder2-3b-instruct/resolve/main/starcoder2-instruct.jpg">
24
+ </p>
25
+
26
+ ### starcoder2-instruct
27
+
28
+ We've fine-tuned starcoder2-3b with an additional 0.7 billion high-quality, code-related tokens for 3 epochs. We used DeepSpeed ZeRO 3 and Flash Attention 2 to accelerate the training process. It achieves **65.9 pass@1** on HumanEval-Python. This model operates using the Alpaca instruction format (excluding the system prompt).
29
+
30
+ ### Usage
31
+
32
+ Here give some examples of how to use our model:
33
+
34
+ ```python
35
+ from transformers import AutoTokenizer, AutoModelForCausalLM
36
+ import torch
37
+ PROMPT = """### Instruction
38
+ {instruction}
39
+ ### Response
40
+ """
41
+ instruction = <Your code instruction here>
42
+ prompt = PROMPT.format(instruction=instruction)
43
+ tokenizer = AutoTokenizer.from_pretrained("TechxGenus/starcoder2-3b-instruct")
44
+ model = AutoModelForCausalLM.from_pretrained(
45
+ "TechxGenus/starcoder2-3b-instruct",
46
+ torch_dtype=torch.bfloat16,
47
+ device_map="auto",
48
+ )
49
+ inputs = tokenizer.encode(prompt, return_tensors="pt")
50
+ outputs = model.generate(input_ids=inputs.to(model.device), max_new_tokens=2048)
51
+ print(tokenizer.decode(outputs[0]))
52
+ ```
53
+
54
+ With text-generation pipeline:
55
+
56
+
57
+ ```python
58
+ from transformers import pipeline
59
+ import torch
60
+ PROMPT = """### Instruction
61
+ {instruction}
62
+ ### Response
63
+ """
64
+ instruction = <Your code instruction here>
65
+ prompt = PROMPT.format(instruction=instruction)
66
+ generator = pipeline(
67
+ model="TechxGenus/starcoder2-3b-instruct",
68
+ task="text-generation",
69
+ torch_dtype=torch.bfloat16,
70
+ device_map="auto",
71
+ )
72
+ result = generator(prompt, max_length=2048)
73
+ print(result[0]["generated_text"])
74
+ ```
75
+
76
+ ### Note
77
+
78
+ Model may sometimes make errors, produce misleading contents, or struggle to manage tasks that are not related to coding. It has undergone very limited testing. Additional safety testing should be performed before any real-world deployments.
79
+