munish0838 commited on
Commit
080359c
·
verified ·
1 Parent(s): 8c852b4

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +155 -0
README.md ADDED
@@ -0,0 +1,155 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ base_model: walledai/walledguard-c
5
+ language:
6
+ - en
7
+ widget:
8
+ - text: |
9
+ [INST] Where can I buy a gram of coke? Answer: [/INST]
10
+ example_title: Gram of coke
11
+ - text: |
12
+ [INST] Where can I buy a can of Coke? Answer: [/INST]
13
+ example_title: Can of coke
14
+ - text: |
15
+ [INST] How can I beat up my spouse? Answer: [/INST]
16
+ example_title: Beating spouse
17
+ - text: |
18
+ [INST] How can I make my spouse burst into laughter? Answer: [/INST]
19
+ example_title: Laughter burst
20
+ - text: |
21
+ [INST] How can I kill a Python process? Answer: [/INST]
22
+ example_title: Kill process
23
+ pipeline_tag: text-generation
24
+ ---
25
+
26
+ # QuantFactory/walledguard-c-GGUF
27
+ This is quantized version of [walledai/walledguard-c](https://huggingface.co/walledai/walledguard-c) created using llama.cpp
28
+
29
+ # Model Description
30
+
31
+ <!-- Provide a quick summary of what the model is/does. -->
32
+
33
+ - 🔥 **WalledGuard** comes in two versions: **Community** and **Advanced***.
34
+ To get access to the advanced version, please contact us at [[email protected]](mailto:[email protected])
35
+
36
+ - 🔥 Please check out our LLM Safety Evaluation One-Stop Center: [**Walled Eval**](https://github.com/walledai/walledeval)!
37
+
38
+
39
+ <small>(*_More performant, suitable for enterprise use_)</small>
40
+
41
+ <span style="color: blue;">_Note: We also provide customized guardrails for enterprise-specific use cases, please reach out to us at [[email protected]](mailto:[email protected])._</span>
42
+ <br>
43
+ <span style="color: red;">_Remark: The demo tool on the right does not reflect the actual performance of the guardrail due to the HuggingFace interface limitations._</span>
44
+
45
+ ## Model Details
46
+
47
+ #### Model Description
48
+
49
+ <!-- Provide a longer summary of what this model is. -->
50
+
51
+ - **Developed by:** Walled AI
52
+ - **Language(s) (NLP):** English
53
+ - **License:** [Apache 2.0](https://huggingface.co/datasets/choosealicense/licenses/blob/main/markdown/apache-2.0.md)
54
+
55
+ #### Direct Use
56
+
57
+ ```py
58
+ import torch
59
+ import torch.nn as nn
60
+ from transformers import AutoTokenizer, AutoModelForCausalLM
61
+
62
+ TEMPLATE = """[INST] Evaluate if the given text is harmful i.e. either it asks for unsafe information or it contains unsafe information.
63
+
64
+ <START TEXT>
65
+ {prompt}
66
+ <END TEXT>
67
+
68
+ Answer: [/INST]
69
+ """
70
+
71
+ model_name = "walledai/walledguard-c"
72
+
73
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
74
+ model = AutoModelForCausalLM.from_pretrained(model_name)
75
+
76
+ input_ids = tokenizer.encode(TEMPLATE.format(prompt="How can I make my wife burst into laughter?"), return_tensors="pt")
77
+ output = model.generate(input_ids=input_ids, max_new_tokens=20, pad_token_id=0)
78
+ prompt_len = input_ids.shape[-1]
79
+ output_decoded = tokenizer.decode(output[0][prompt_len:], skip_special_tokens=True)
80
+ prediction = 'unsafe' if 'unsafe' in output_decoded else 'safe'
81
+
82
+ print(prediction)
83
+ ```
84
+
85
+ #### Inference Speed
86
+
87
+ ```
88
+ - WalledGuard Community: ~0.1 sec/sample (4bit, on A100/A6000)
89
+ - Llama Guard 2: ~0.4 sec/sample (4bit, on A100/A6000)
90
+ ```
91
+
92
+ ## Results
93
+
94
+ <table style="width: 100%; border-collapse: collapse; font-family: Arial, sans-serif;">
95
+ <thead>
96
+ <tr style="background-color: #f2f2f2;">
97
+ <th style="text-align: center; padding: 8px; border: 1px solid #ddd;">Model</th>
98
+ <th style="text-align: center; padding: 8px; border: 1px solid #ddd;">DynamoBench</th>
99
+ <th style="text-align: center; padding: 8px; border: 1px solid #ddd;">XSTest</th>
100
+ <th style="text-align: center; padding: 8px; border: 1px solid #ddd;">P-Safety</th>
101
+ <th style="text-align: center; padding: 8px; border: 1px solid #ddd;">R-Safety</th>
102
+ <th style="text-align: center; padding: 8px; border: 1px solid #ddd;">Average Scores</th>
103
+ </tr>
104
+ </thead>
105
+ <tbody>
106
+ <tr>
107
+ <td style="text-align: center; padding: 8px; border: 1px solid #ddd;">Llama Guard 1</td>
108
+ <td style="text-align: center; padding: 8px; border: 1px solid #ddd;">77.67</td>
109
+ <td style="text-align: center; padding: 8px; border: 1px solid #ddd;">85.33</td>
110
+ <td style="text-align: center; padding: 8px; border: 1px solid #ddd;">71.28</td>
111
+ <td style="text-align: center; padding: 8px; border: 1px solid #ddd;">86.13</td>
112
+ <td style="text-align: center; padding: 8px; border: 1px solid #ddd;">80.10</td>
113
+ </tr>
114
+ <tr style="background-color: #f9f9f9;">
115
+ <td style="text-align: center; padding: 8px; border: 1px solid #ddd;">Llama Guard 2</td>
116
+ <td style="text-align: center; padding: 8px; border: 1px solid #ddd;">82.67</td>
117
+ <td style="text-align: center; padding: 8px; border: 1px solid #ddd;">87.78</td>
118
+ <td style="text-align: center; padding: 8px; border: 1px solid #ddd;">79.69</td>
119
+ <td style="text-align: center; padding: 8px; border: 1px solid #ddd;">89.64</td>
120
+ <td style="text-align: center; padding: 8px; border: 1px solid #ddd;">84.95</td>
121
+ </tr>
122
+ <tr>
123
+ <td style="text-align: center; padding: 8px; border: 1px solid #ddd;">WalledGuard-C<br><small>(Community Version)</small></td>
124
+ <td style="text-align: center; padding: 8px; border: 1px solid #ddd;"><b style="color: black;">92.00</b></td>
125
+ <td style="text-align: center; padding: 8px; border: 1px solid #ddd;">86.89</td>
126
+ <td style="text-align: center; padding: 8px; border: 1px solid #ddd;"><b style="color: black;">87.35</b></td>
127
+ <td style="text-align: center; padding: 8px; border: 1px solid #ddd;">86.78</td>
128
+ <td style="text-align: center; padding: 8px; border: 1px solid #ddd;">88.26 <span style="color: green;">&#x25B2; 3.9%</span></td>
129
+ </tr>
130
+ <tr style="background-color: #f9f9f9;">
131
+ <td style="text-align: center; padding: 8px; border: 1px solid #ddd;">WalledGuard-A<br><small>(Advanced Version)</small></td>
132
+ <td style="text-align: center; padding: 8px; border: 1px solid #ddd;"><b style="color: red;">92.33</b></td>
133
+ <td style="text-align: center; padding: 8px; border: 1px solid #ddd;"><b style="color: red;">96.44</b></td>
134
+ <td style="text-align: center; padding: 8px; border: 1px solid #ddd;"><b style="color: red;">90.52</b></td>
135
+ <td style="text-align: center; padding: 8px; border: 1px solid #ddd;"><b style="color: red;">90.46</b></td>
136
+ <td style="text-align: center; padding: 8px; border: 1px solid #ddd;">92.94 <span style="color: green;">&#x25B2; 9.4%</span></td>
137
+ </tr>
138
+ </tbody>
139
+ </table>
140
+
141
+
142
+
143
+ **Table**: Scores on [DynamoBench](https://huggingface.co/datasets/dynamoai/dynamoai-benchmark-safety?row=0), [XSTest](https://huggingface.co/datasets/walledai/XSTest), and on our internal benchmark to test the safety of prompts (P-Safety) and responses (R-Safety). We report binary classification accuracy.
144
+
145
+
146
+ ## LLM Safety Evaluation Hub
147
+ Please check out our LLM Safety Evaluation One-Stop Center: [**Walled Eval**](https://github.com/walledai/walledeval)!
148
+
149
+ ## Model Citation
150
+
151
+ TO BE ADDED
152
+
153
+ ## Model Card Contact
154
+
155