Update README.md
Browse files
README.md
CHANGED
@@ -1,199 +1,283 @@
|
|
1 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
library_name: transformers
|
3 |
-
|
4 |
---
|
|
|
|
|
5 |
|
6 |
-
#
|
7 |
|
8 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
|
|
|
10 |
|
|
|
|
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
-
|
23 |
-
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
###
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
license: cc-by-nc-4.0
|
3 |
+
base_model: google/gemma-2b-it
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
- axolotl
|
7 |
+
- gemma
|
8 |
+
- instruct
|
9 |
+
- finetune
|
10 |
+
- chatml
|
11 |
+
- gpt4
|
12 |
+
- synthetic data
|
13 |
+
- distillation
|
14 |
+
model-index:
|
15 |
+
- name: gemma-2b-openhermes
|
16 |
+
results: []
|
17 |
+
datasets:
|
18 |
+
- mlabonne/chatml-OpenHermes2.5-dpo-binarized-alpha
|
19 |
+
language:
|
20 |
+
- en
|
21 |
library_name: transformers
|
22 |
+
pipeline_tag: text-generation
|
23 |
---
|
24 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
25 |
+
should probably proofread and complete it, then remove this comment. -->
|
26 |
|
27 |
+
# gemma-2b-openhermes
|
28 |
|
|
|
29 |
|
30 |
+

|
31 |
|
32 |
+
gemma-2b-openhermes is a variant of the Gemma 2B language model, which has been further fine-tuned on the OpenHermes-2.5 preference dataset
|
33 |
+
using QLoRA.
|
34 |
|
35 |
+
|
36 |
+
* [google/gemma-2b-it](https://huggingface.co/google/gemma-2b-it)
|
37 |
+
* [mlabonne/chatml-OpenHermes2.5-dpo-binarized-alpha](https://huggingface.co/datasets/mlabonne/chatml-OpenHermes2.5-dpo-binarized-alpha)
|
38 |
+
|
39 |
+
</details><br>
|
40 |
+
|
41 |
+
## Usage
|
42 |
+
|
43 |
+
### Chat Template
|
44 |
+
|
45 |
+
The instruction-tuned models use a chat template that must be adhered to for conversational use.
|
46 |
+
The easiest way to apply it is using the tokenizer's built-in chat template, as shown in the following snippet.
|
47 |
+
|
48 |
+
Let's load the model and apply the chat template to a conversation. In this example, we'll start with a single user interaction:
|
49 |
+
|
50 |
+
```py
|
51 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
52 |
+
import transformers
|
53 |
+
import torch
|
54 |
+
|
55 |
+
model_id = "abideen/gemma-2b-openhermes"
|
56 |
+
dtype = torch.bfloat16
|
57 |
+
|
58 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
59 |
+
model = AutoModelForCausalLM.from_pretrained(
|
60 |
+
model_id,
|
61 |
+
device_map="cuda",
|
62 |
+
torch_dtype=dtype,
|
63 |
+
)
|
64 |
+
|
65 |
+
chat = [{ "role": "user", "content": "What is a Language Model?" }]
|
66 |
+
prompt = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
|
67 |
+
```
|
68 |
+
|
69 |
+
After the prompt is ready, generation can be performed like this:
|
70 |
+
|
71 |
+
```py
|
72 |
+
inputs = tokenizer.encode(prompt, add_special_tokens=True, return_tensors="pt")
|
73 |
+
outputs = model.generate(input_ids=inputs.to(model.device), max_new_tokens=250)
|
74 |
+
print(tokenizer.decode(outputs[0]))
|
75 |
+
```
|
76 |
+
|
77 |
+
### Inputs and outputs
|
78 |
+
|
79 |
+
* **Input:** Text string, such as a question, a prompt, or a document to be
|
80 |
+
summarized.
|
81 |
+
* **Output:** Generated English-language text in response to the input, such
|
82 |
+
as an answer to a question, or a summary of a document.
|
83 |
+
|
84 |
+
## 🏆 Evaluation results
|
85 |
+
|
86 |
+
# Nous Benchmark
|
87 |
+
|
88 |
+
Agieval
|
89 |
+
|
90 |
+
| Task | Version | Metric | Value | | StdErr |
|
91 |
+
|-------------------------------------------|---------|--------|-------|---|---------|
|
92 |
+
| agieval\_aqua\_rat | 0 | acc | 24.02 | _ | 2.69 |
|
93 |
+
| agieval\_aqua\_rat | 0 | acc\_norm | 24.02 | _ | 2.69 |
|
94 |
+
| agieval\_logiqa\_en | 0 | acc | 23.20 | _ | 1.66 |
|
95 |
+
| agieval\_logiqa\_en | 0 | acc\_norm | 24.42 | _ | 1.69 |
|
96 |
+
| agieval\_lsat\_ar | 0 | acc | 18.26 | _ | 2.55 |
|
97 |
+
| agieval\_lsat\_ar | 0 | acc\_norm | 18.70 | _ | 2.58 |
|
98 |
+
| agieval\_lsat\_lr | 0 | acc | 22.35 | _ | 1.85 |
|
99 |
+
| agieval\_lsat\_lr | 0 | acc\_norm | 23.53 | _ | 1.88 |
|
100 |
+
| agieval\_lsat\_rc | 0 | acc | 20.82 | _ | 2.48 |
|
101 |
+
| agieval\_lsat\_rc | 0 | acc\_norm | 20.07 | _ | 2.45 |
|
102 |
+
| agieval\_sat\_en | 0 | acc | 32.52 | _ | 3.27 |
|
103 |
+
| agieval\_sat\_en | 0 | acc\_norm | 32.52 | _ | 3.27 |
|
104 |
+
| agieval\_sat\_en\_without\_passage | 0 | acc | 25.73 | _ | 3.05 |
|
105 |
+
| agieval\_sat\_en\_without\_passage | 0 | acc\_norm | 24.27 | _ | 2.99 |
|
106 |
+
| agieval\_sat\_math | 0 | acc | 25.00 | _ | 2.93 |
|
107 |
+
| agieval\_sat\_math | 0 | acc\_norm | 20.91 | _ | 2.75 |
|
108 |
+
Average: 24.11
|
109 |
+
|
110 |
+
GPT4ALL
|
111 |
+
|
112 |
+
| Task | Version | Metric | Value | | StdErr |
|
113 |
+
|----------------------|---------|--------|-------|---|---------|
|
114 |
+
| arc\_challenge | 0 | acc | 21.77 | _ | 1.21 |
|
115 |
+
| arc\_challenge | 0 | acc\_norm | 24.15 | _ | 1.25 |
|
116 |
+
| arc\_easy | 0 | acc | 37.37 | _ | 0.99 |
|
117 |
+
| arc\_easy | 0 | acc\_norm | 36.95 | _ | 0.99 |
|
118 |
+
| boolq | 1 | acc | 65.60 | _ | 0.83 |
|
119 |
+
| hellaswag | 0 | acc | 34.54 | _ | 0.47 |
|
120 |
+
| hellaswag | 0 | acc\_norm | 40.54 | _ | 0.49 |
|
121 |
+
| openbookqa | 0 | acc | 15.00 | _ | 1.59 |
|
122 |
+
| openbookqa | 0 | acc\_norm | 27.40 | _ | 2.00 |
|
123 |
+
| piqa | 0 | acc | 60.88 | _ | 1.14 |
|
124 |
+
| piqa | 0 | acc\_norm | 60.55 | _ | 1.14 |
|
125 |
+
| winogrande | 0 | acc | 50.91 | _ | 1.41 |
|
126 |
+
Average: 40.01
|
127 |
+
|
128 |
+
BigBench
|
129 |
+
|
130 |
+
| Task | Version | Metric | Value | Std Err |
|
131 |
+
|-----------------------------------|---------|--------|--------|---------|
|
132 |
+
| bigbench\_causal\_judgement | 0 | MCG | 50 | 2.26 |
|
133 |
+
| bigbench\_date\_understanding | 0 | MCG | 49.14 | 2.18 |
|
134 |
+
| bigbench\_disambiguation\_qa | 0 | MCG | 49.31 | 2.74 |
|
135 |
+
| bigbench\_geometric\_shapes | 0 | MCG | 14.18 | 1.37 |
|
136 |
+
| bigbench\_logical\_deduction\_5objs | 0 | MCG | 49.41 | 2.73 |
|
137 |
+
| bigbench\_logical\_deduction\_7objs | 0 | MCG | 41.48 | 2.46 |
|
138 |
+
| bigbench\_logical\_deduction\_3objs | 0 | MCG | 69.33 | 2.75 |
|
139 |
+
| bigbench\_movie\_recommendation | 0 | MCG | 51.71 | 2.25 |
|
140 |
+
| bigbench\_navigate | 0 | MCG | 50 | 1.58 |
|
141 |
+
| bigbench\_reasoning\_colored\_obj | 0 | MCG | 51.92 | 0.99 |
|
142 |
+
| bigbench\_ruin\_names | 0 | MCG | 48.14 | 2.01 |
|
143 |
+
| bigbench\_salient\_trans\_err\_detec | 0 | MCG | 39.92 | 1.2 |
|
144 |
+
| bigbench\_snarks | 0 | MCG | 64.14 | 3.71 |
|
145 |
+
| bigbench\_sports\_understanding | 0 | MCG | 55.31 | 1.59 |
|
146 |
+
| bigbench\_temporal\_sequences | 0 | MCG | 46.92 | 1.4 |
|
147 |
+
| bigbench\_tsk\_shuff\_objs\_5 | 0 | MCG | 25.04 | 1.01 |
|
148 |
+
| bigbench\_tsk\_shuff\_objs\_7 | 0 | MCG | 15.04 | 0.72 |
|
149 |
+
| bigbench\_tsk\_shuff\_objs\_3 | 0 | MCG | 55.33 | 2.75 |
|
150 |
+
Average: 44.75
|
151 |
+
|
152 |
+
TruthfulQA
|
153 |
+
|
154 |
+
| Task | Version | Metric | Value | Std Err |
|
155 |
+
|----------------------------------|---------|--------|--------|----------|
|
156 |
+
| truthfulqa\_mc | 1 | mc1 | 30.11 | 1.61 |
|
157 |
+
| truthfulqa\_mc | 1 | mc2 | 47.69 | 1.61 |
|
158 |
+
Average: 38.90
|
159 |
+
|
160 |
+
|
161 |
+
# Openllm Benchmark
|
162 |
+
|
163 |
+
| Task |Version| Metric |Value| |Stderr|
|
164 |
+
|-------------|------:|--------|----:|---|-----:|
|
165 |
+
|arc_challenge| 0|acc |40.44|± | 1.43|
|
166 |
+
| | |acc_norm|43.81|± | 1.34|
|
167 |
+
|hellaswag | 0|acc |48.1 |± | 0.45|
|
168 |
+
| | |acc_norm|62.73|± | 0.32|
|
169 |
+
|gsm8k | 0|acc |5.6 |± | 0.6 |
|
170 |
+
|winogrande | 0|acc |60.91|± | 1.3 |
|
171 |
+
|mmlu | 0|acc |37.62 |±| 0.6 |
|
172 |
+
|
173 |
+
Average: 73.5%
|
174 |
+
|
175 |
+
### TruthfulQA
|
176 |
+
| Task |Version|Metric|Value| |Stderr|
|
177 |
+
|-------------|------:|------|----:|---|-----:|
|
178 |
+
|truthfulqa_mc| 1|mc1 |29.00|± | 1.58|
|
179 |
+
| | |mc2 |45.83|± | 1.59|
|
180 |
+
|
181 |
+
|
182 |
+
### Training hyperparameters
|
183 |
+
|
184 |
+
The following hyperparameters were used during training:
|
185 |
+
- learning_rate: 5e-07
|
186 |
+
- train_batch_size: 1
|
187 |
+
- eval_batch_size: 8
|
188 |
+
- seed: 42
|
189 |
+
- gradient_accumulation_steps: 8
|
190 |
+
- total_train_batch_size: 8
|
191 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
192 |
+
- lr_scheduler_type: cosine
|
193 |
+
- lr_scheduler_warmup_steps: 100
|
194 |
+
- training_steps: 1300
|
195 |
+
|
196 |
+
|
197 |
+
### 📝 Axolotl Configuration
|
198 |
+
|
199 |
+
```yaml
|
200 |
+
base_model: google/gemma-2b-it
|
201 |
+
model_type: GemmaForCausalLM
|
202 |
+
tokenizer_type: GemmaTokenizer
|
203 |
+
trust_remote_code: true
|
204 |
+
|
205 |
+
load_in_8bit: false
|
206 |
+
load_in_4bit: true
|
207 |
+
strict: false
|
208 |
+
|
209 |
+
rl: dpo
|
210 |
+
chat_template: chatml
|
211 |
+
datasets:
|
212 |
+
- path: mlabonne/chatml-OpenHermes2.5-dpo-binarized-alpha
|
213 |
+
split: train
|
214 |
+
type: chatml.intel
|
215 |
+
dataset_prepared_path:
|
216 |
+
val_set_size: 0.01
|
217 |
+
output_dir: ./out
|
218 |
+
|
219 |
+
adapter: qlora
|
220 |
+
lora_model_dir:
|
221 |
+
|
222 |
+
sequence_len: 1800
|
223 |
+
sample_packing: false
|
224 |
+
pad_to_sequence_len: false
|
225 |
+
|
226 |
+
lora_r: 16
|
227 |
+
lora_alpha: 16
|
228 |
+
lora_dropout: 0.05
|
229 |
+
lora_target_linear: true
|
230 |
+
lora_fan_in_fan_out:
|
231 |
+
lora_target_modules:
|
232 |
+
|
233 |
+
wandb_project: gemma
|
234 |
+
wandb_entity:
|
235 |
+
wandb_watch:
|
236 |
+
wandb_name:
|
237 |
+
wandb_log_model:
|
238 |
+
|
239 |
+
gradient_accumulation_steps: 8
|
240 |
+
micro_batch_size: 1
|
241 |
+
num_epochs: 1
|
242 |
+
optimizer: paged_adamw_32bit
|
243 |
+
lr_scheduler: cosine
|
244 |
+
learning_rate: 5e-7
|
245 |
+
|
246 |
+
train_on_inputs: false
|
247 |
+
group_by_length: false
|
248 |
+
bf16: true
|
249 |
+
fp16: false
|
250 |
+
tf32: true
|
251 |
+
|
252 |
+
gradient_checkpointing: true
|
253 |
+
early_stopping_patience:
|
254 |
+
resume_from_checkpoint:
|
255 |
+
local_rank:
|
256 |
+
logging_steps: 1
|
257 |
+
xformers_attention:
|
258 |
+
flash_attention: false
|
259 |
+
|
260 |
+
warmup_steps: 100
|
261 |
+
evals_per_epoch: 1
|
262 |
+
eval_table_size:
|
263 |
+
eval_table_max_new_tokens: 128
|
264 |
+
save_steps: 1000
|
265 |
+
max_steps: 1300
|
266 |
+
debug:
|
267 |
+
deepspeed:
|
268 |
+
weight_decay: 0.0
|
269 |
+
fsdp:
|
270 |
+
fsdp_config:
|
271 |
+
special_tokens:
|
272 |
+
```
|
273 |
+
|
274 |
+
|
275 |
+
### Framework versions
|
276 |
+
|
277 |
+
- Transformers 4.39.0.dev0
|
278 |
+
- Pytorch 2.1.2+cu118
|
279 |
+
- Datasets 2.17.0
|
280 |
+
- Tokenizers 0.15.0
|
281 |
+
- axolotl: 0.4.0
|
282 |
+
|
283 |
+
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
|