Rasphi-MoE-Instruct-Unfinetuned / modeling_rasphi.py
QuietImpostor's picture
Upload code to run Rasphi
e187c98 verified
raw
history blame
41.3 kB
import torch
import torch.nn as nn
from transformers.modeling_outputs import MoeModelOutputWithPast, MoeCausalLMOutputWithPast
from transformers.modeling_utils import PreTrainedModel, PretrainedConfig
from torch.nn import CrossEntropyLoss
from typing import Optional, Tuple, Union, List
import torch.nn.functional as F
import math
ACT2FN = {
"relu": F.relu,
"silu": F.silu,
"gelu": F.gelu,
"tanh": torch.tanh,
"sigmoid": torch.sigmoid,
}
class RasphiDecoderLayer(nn.Module):
def __init__(self, config: RasphiConfig, layer_idx: int):
super().__init__()
self.layer_idx = layer_idx
self.hidden_size = config.hidden_size
self.reasoning_hidden_size = config.reasoning_hidden_size
self.content_hidden_size = config.content_hidden_size
# Attention layers
self.reasoning_self_attn = RasphiAttention(config, self.reasoning_hidden_size, layer_idx)
self.content_self_attn = RasphiAttention(config, self.content_hidden_size, layer_idx)
# MoE layers
self.reasoning_moe = RasphiSparseMoeBlock(config, is_reasoning=True)
self.content_moe = RasphiSparseMoeBlock(config, is_reasoning=False)
# Layer norms
self.reasoning_input_layernorm = nn.LayerNorm(self.reasoning_hidden_size, eps=config.rms_norm_eps)
self.reasoning_post_attention_layernorm = nn.LayerNorm(self.reasoning_hidden_size, eps=config.rms_norm_eps)
self.content_input_layernorm = nn.LayerNorm(self.content_hidden_size, eps=config.rms_norm_eps)
self.content_post_attention_layernorm = nn.LayerNorm(self.content_hidden_size, eps=config.rms_norm_eps)
# Stream interaction
self.stream_interaction = config.stream_interaction
if self.stream_interaction in ["attention", "both"]:
self.reasoning_to_content_attn = RasphiAttention(config, self.content_hidden_size, layer_idx)
self.content_to_reasoning_attn = RasphiAttention(config, self.reasoning_hidden_size, layer_idx)
if self.stream_interaction in ["mlp", "both"]:
self.reasoning_to_content_mlp = nn.Linear(self.reasoning_hidden_size, self.content_hidden_size)
self.content_to_reasoning_mlp = nn.Linear(self.content_hidden_size, self.reasoning_hidden_size)
def forward(
self,
reasoning_hidden_states: torch.Tensor,
content_hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
output_router_logits: Optional[bool] = False,
use_cache: Optional[bool] = False,
) -> Tuple[torch.FloatTensor, ...]:
# Self Attention for both streams
reasoning_residual = reasoning_hidden_states
content_residual = content_hidden_states
reasoning_hidden_states = self.reasoning_input_layernorm(reasoning_hidden_states)
content_hidden_states = self.content_input_layernorm(content_hidden_states)
reasoning_self_attn_output, reasoning_self_attn_weights, reasoning_present_key_value = self.reasoning_self_attn(
hidden_states=reasoning_hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value[0] if past_key_value is not None else None,
output_attentions=output_attentions,
use_cache=use_cache,
)
content_self_attn_output, content_self_attn_weights, content_present_key_value = self.content_self_attn(
hidden_states=content_hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value[1] if past_key_value is not None else None,
output_attentions=output_attentions,
use_cache=use_cache,
)
reasoning_hidden_states = reasoning_residual + reasoning_self_attn_output
content_hidden_states = content_residual + content_self_attn_output
# Stream Interaction
if self.stream_interaction in ["attention", "both"]:
reasoning_to_content, _, _ = self.reasoning_to_content_attn(
hidden_states=content_hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=None,
output_attentions=False,
use_cache=False,
key_value_states=reasoning_hidden_states,
)
content_to_reasoning, _, _ = self.content_to_reasoning_attn(
hidden_states=reasoning_hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=None,
output_attentions=False,
use_cache=False,
key_value_states=content_hidden_states,
)
reasoning_hidden_states = reasoning_hidden_states + content_to_reasoning
content_hidden_states = content_hidden_states + reasoning_to_content
if self.stream_interaction in ["mlp", "both"]:
reasoning_to_content = self.reasoning_to_content_mlp(reasoning_hidden_states)
content_to_reasoning = self.content_to_reasoning_mlp(content_hidden_states)
reasoning_hidden_states = reasoning_hidden_states + content_to_reasoning
content_hidden_states = content_hidden_states + reasoning_to_content
# MoE for both streams
reasoning_residual = reasoning_hidden_states
content_residual = content_hidden_states
reasoning_hidden_states = self.reasoning_post_attention_layernorm(reasoning_hidden_states)
content_hidden_states = self.content_post_attention_layernorm(content_hidden_states)
reasoning_moe_output, reasoning_router_logits = self.reasoning_moe(reasoning_hidden_states)
content_moe_output, content_router_logits = self.content_moe(content_hidden_states)
reasoning_hidden_states = reasoning_residual + reasoning_moe_output
content_hidden_states = content_residual + content_moe_output
outputs = (reasoning_hidden_states, content_hidden_states)
if use_cache:
outputs += ((reasoning_present_key_value, content_present_key_value),)
if output_attentions:
outputs += (reasoning_self_attn_weights, content_self_attn_weights)
if output_router_logits:
outputs += (reasoning_router_logits, content_router_logits)
return outputs
class RasphiModel(PreTrainedModel):
config_class = RasphiConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["RasphiDecoderLayer"]
_skip_keys_device_placement = "past_key_values"
_supports_flash_attn_2 = True
_supports_sdpa = True
_supports_cache_class = True
def __init__(self, config: RasphiConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.reasoning_embed_tokens = nn.Embedding(config.vocab_size, config.reasoning_hidden_size, self.padding_idx)
self.content_embed_tokens = nn.Embedding(config.vocab_size, config.content_hidden_size, self.padding_idx)
self.layers = nn.ModuleList([RasphiDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)])
self.reasoning_norm = nn.LayerNorm(config.reasoning_hidden_size, eps=config.rms_norm_eps, elementwise_affine=True)
self.content_norm = nn.LayerNorm(config.content_hidden_size, eps=config.rms_norm_eps, elementwise_affine=True)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return (self.reasoning_embed_tokens, self.content_embed_tokens)
def set_input_embeddings(self, value):
self.reasoning_embed_tokens = value[0]
self.content_embed_tokens = value[1]
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
output_router_logits: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, MoeModelOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_router_logits = (
output_router_logits if output_router_logits is not None else self.config.output_router_logits
)
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
elif input_ids is not None:
batch_size, seq_length = input_ids.shape
elif inputs_embeds is not None:
batch_size, seq_length, _ = inputs_embeds.shape
else:
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
if inputs_embeds is None:
reasoning_inputs_embeds = self.reasoning_embed_tokens(input_ids)
content_inputs_embeds = self.content_embed_tokens(input_ids)
else:
reasoning_inputs_embeds = inputs_embeds[:, :, :self.config.reasoning_hidden_size]
content_inputs_embeds = inputs_embeds[:, :, self.config.reasoning_hidden_size:]
reasoning_hidden_states = reasoning_inputs_embeds
content_hidden_states = content_inputs_embeds
# decoder layers
all_reasoning_hidden_states = () if output_hidden_states else None
all_content_hidden_states = () if output_hidden_states else None
all_reasoning_self_attns = () if output_attentions else None
all_content_self_attns = () if output_attentions else None
all_reasoning_router_logits = () if output_router_logits else None
all_content_router_logits = () if output_router_logits else None
next_decoder_cache = None
for decoder_layer in self.layers:
if output_hidden_states:
all_reasoning_hidden_states += (reasoning_hidden_states,)
all_content_hidden_states += (content_hidden_states,)
layer_outputs = decoder_layer(
reasoning_hidden_states,
content_hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
output_router_logits=output_router_logits,
use_cache=use_cache,
)
reasoning_hidden_states = layer_outputs[0]
content_hidden_states = layer_outputs[1]
if use_cache:
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
if output_attentions:
all_reasoning_self_attns += (layer_outputs[2],)
all_content_self_attns += (layer_outputs[3],)
if output_router_logits:
all_reasoning_router_logits += (layer_outputs[-2],)
all_content_router_logits += (layer_outputs[-1],)
reasoning_hidden_states = self.reasoning_norm(reasoning_hidden_states)
content_hidden_states = self.content_norm(content_hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_reasoning_hidden_states += (reasoning_hidden_states,)
all_content_hidden_states += (content_hidden_states,)
next_cache = None
if use_cache:
next_cache = next_decoder_cache
if not return_dict:
return tuple(
v
for v in [reasoning_hidden_states, content_hidden_states, next_cache, all_reasoning_hidden_states,
all_content_hidden_states, all_reasoning_self_attns, all_content_self_attns,
all_reasoning_router_logits, all_content_router_logits]
if v is not None
)
return MoeModelOutputWithPast(
last_hidden_state=(reasoning_hidden_states, content_hidden_states),
past_key_values=next_cache,
hidden_states=(all_reasoning_hidden_states, all_content_hidden_states),
attentions=(all_reasoning_self_attns, all_content_self_attns),
router_logits=(all_reasoning_router_logits, all_content_router_logits),
)
class RasphiSparseMoeBlock(nn.Module):
def __init__(self, config: RasphiConfig, is_reasoning: bool):
super().__init__()
self.hidden_dim = config.reasoning_hidden_size if is_reasoning else config.content_hidden_size
self.ffn_dim = config.intermediate_size
self.num_experts = config.num_reasoning_experts if is_reasoning else config.num_content_experts
self.top_k = config.num_experts_per_tok
# gating
self.gate = nn.Linear(self.hidden_dim, self.num_experts, bias=False)
self.experts = nn.ModuleList([RasphiBlockSparseTop2MLP(config, is_reasoning) for _ in range(self.num_experts)])
# Jitter parameters
self.router_jitter_noise = config.router_jitter_noise
self.input_jitter_noise = config.input_jitter_noise
def forward(self, hidden_states: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
batch_size, sequence_length, hidden_dim = hidden_states.shape
if self.training and self.input_jitter_noise > 0:
hidden_states *= torch.empty_like(hidden_states).uniform_(1.0 - self.input_jitter_noise, 1.0 + self.input_jitter_noise)
hidden_states = hidden_states.view(-1, hidden_dim)
router_logits = self.gate(hidden_states)
routing_weights, selected_experts = sparsemixer(
router_logits,
top_k=self.top_k,
jitter_eps=self.router_jitter_noise,
training=self.training,
)
final_hidden_states = torch.zeros(
(batch_size * sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device
)
# One hot encode the selected experts to create an expert mask
expert_mask = torch.nn.functional.one_hot(selected_experts, num_classes=self.num_experts).permute(2, 1, 0)
# Loop over all available experts in the model and perform the computation on each expert
for expert_idx in range(self.num_experts):
expert_layer = self.experts[expert_idx]
idx, top_x = torch.where(expert_mask[expert_idx])
if top_x.shape[0] == 0:
continue
# Index the correct hidden states and compute the expert hidden state for
# the current expert. We need to make sure to multiply the output hidden
# states by `routing_weights` on the corresponding tokens (top-1 and top-2)
current_state = hidden_states[None, top_x.tolist()].reshape(-1, hidden_dim)
current_hidden_states = expert_layer(current_state) * routing_weights[top_x.tolist(), idx.tolist(), None]
# Add the expert output to the final hidden states
final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype))
final_hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim)
return final_hidden_states, router_logits
class RasphiBlockSparseTop2MLP(nn.Module):
def __init__(self, config: RasphiConfig, is_reasoning: bool):
super().__init__()
self.ffn_dim = config.intermediate_size
self.hidden_dim = config.reasoning_hidden_size if is_reasoning else config.content_hidden_size
self.w1 = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False)
self.w2 = nn.Linear(self.ffn_dim, self.hidden_dim, bias=False)
self.w3 = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False)
self.act_fn = ACT2FN[config.hidden_act]
def forward(self, hidden_states):
current_hidden_states = self.act_fn(self.w1(hidden_states)) * self.w3(hidden_states)
current_hidden_states = self.w2(current_hidden_states)
return current_hidden_states
class RasphiPreTrainedModel(PreTrainedModel):
config_class = RasphiConfig
base_model_prefix = "rasphi"
supports_gradient_checkpointing = True
_no_split_modules = ["RasphiDecoderLayer"]
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
class RasphiForCausalLM(RasphiPreTrainedModel):
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config):
super().__init__(config)
self.model = RasphiModel(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.content_hidden_size, config.vocab_size, bias=config.lm_head_bias)
self.router_aux_loss_coef = config.router_aux_loss_coef
self.num_experts = config.num_content_experts # We use content experts for language modeling
self.num_experts_per_tok = config.num_experts_per_tok
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.get_input_embeddings()[1] # Return content embeddings
def set_input_embeddings(self, value):
self.model.set_input_embeddings((self.model.get_input_embeddings()[0], value))
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, **kwargs):
token_type_ids = kwargs.get("token_type_ids", None)
# only last token for inputs_ids if past is defined in kwargs
if past_key_values:
input_ids = input_ids[:, -1].unsqueeze(-1)
if token_type_ids is not None:
token_type_ids = token_type_ids[:, -1].unsqueeze(-1)
attention_mask = kwargs.get("attention_mask", None)
position_ids = kwargs.get("position_ids", None)
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if past_key_values:
position_ids = position_ids[:, -1].unsqueeze(-1)
else:
position_ids = None
return {
"input_ids": input_ids,
"past_key_values": past_key_values,
"use_cache": kwargs.get("use_cache"),
"position_ids": position_ids,
"attention_mask": attention_mask,
"token_type_ids": token_type_ids,
}
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
output_router_logits: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, MoeCausalLMOutputWithPast]:
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.model(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
output_router_logits=output_router_logits,
return_dict=return_dict,
)
hidden_states = outputs[0]
content_hidden_states = hidden_states[1] # Use content stream for language modeling
logits = self.lm_head(content_hidden_states)
loss = None
if labels is not None:
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss()
loss = loss_fct(shift_logits.view(-1, self.config.vocab_size), shift_labels.view(-1))
aux_loss = None
if output_router_logits:
aux_loss = load_balancing_loss_func(
outputs.router_logits[1] if return_dict else outputs[-1][1], # Use content stream router logits
self.num_experts,
self.num_experts_per_tok,
attention_mask,
)
if labels is not None:
loss += self.router_aux_loss_coef * aux_loss
if not return_dict:
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return MoeCausalLMOutputWithPast(
loss=loss,
aux_loss=aux_loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
router_logits=outputs.router_logits,
)
@staticmethod
def _reorder_cache(past, beam_idx):
return tuple(
tuple(past_state.index_select(0, beam_idx) for past_state in layer_past)
for layer_past in past
)
#—Model > Rasphi changes start—#
class RasphiAttention(nn.Module):
def __init__(self, config: RasphiConfig, hidden_size: int, layer_idx: Optional[int] = None):
super().__init__()
self.config = config
self.layer_idx = layer_idx
self.hidden_size = hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = hidden_size // self.num_heads
self.num_key_value_heads = config.num_key_value_heads
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
self.max_position_embeddings = config.max_position_embeddings
self.rope_theta = config.rope_theta
self.is_causal = True
self.attention_dropout = config.attention_dropout
if (self.head_dim * self.num_heads) != self.hidden_size:
raise ValueError(
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
f" and `num_heads`: {self.num_heads})."
)
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias)
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.attention_bias)
if getattr(config, 'rope_scaling', None) is None:
self.rotary_emb = RasphiMoERotaryEmbedding(
self.head_dim,
max_position_embeddings=self.max_position_embeddings,
base=self.rope_theta,
)
else:
scaling_type = self.config.rope_scaling["type"]
if scaling_type == "linear":
self.rotary_emb = LinearScalingRotaryEmbedding(
self.head_dim,
max_position_embeddings=self.max_position_embeddings,
scaling_factor=self.config.rope_scaling["factor"],
base=self.rope_theta,
)
elif scaling_type == "dynamic":
self.rotary_emb = DynamicNTKScalingRotaryEmbedding(
self.head_dim,
max_position_embeddings=self.max_position_embeddings,
scaling_factor=self.config.rope_scaling["factor"],
base=self.rope_theta,
)
else:
raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
key_value_states: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
if key_value_states is None:
# self-attention
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
else:
# cross-attention
key_states = self.k_proj(key_value_states)
value_states = self.v_proj(key_value_states)
kv_len = key_value_states.size(1)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, -1, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, -1, self.num_key_value_heads, self.head_dim).transpose(1, 2)
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
kv_seq_len += past_key_value[0].shape[-2]
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
if past_key_value is not None:
# reuse k, v, self_attention
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
past_key_value = (key_states, value_states) if use_cache else None
# repeat k/v heads if n_kv_heads < n_heads
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
if attention_mask is not None:
attn_weights = attn_weights + attention_mask
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
attn_output = torch.matmul(attn_weights, value_states)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
class mp(torch.autograd.Function):
@staticmethod
def forward(
ctx,
scores: torch.Tensor,
multiplier: torch.Tensor,
selected_experts: torch.Tensor,
masked_gates: torch.Tensor,
mask_for_one: torch.Tensor,
):
ctx.save_for_backward(multiplier, selected_experts, masked_gates)
return multiplier * mask_for_one
@staticmethod
def backward(
ctx,
grad_at_output: torch.Tensor,
):
multiplier, selected_experts, masked_gates = ctx.saved_tensors
grad_at_output = grad_at_output * multiplier
grad_at_scores_expaned = masked_gates * grad_at_output.mul(-1)
grad_at_scores_expaned.scatter_add_(
dim=-1,
index=selected_experts,
src=grad_at_output,
)
return (
grad_at_scores_expaned,
None,
None,
None,
None,
)
def sparsemixer(scores, top_k, jitter_eps, training):
assert top_k == 2
################ first expert ################
with torch.no_grad():
# compute mask for sparsity
mask_logits_threshold, max_ind = scores.max(dim=-1, keepdim=True)
factor = scores.abs().clamp(min=mask_logits_threshold)
mask_logits_threshold = (
(mask_logits_threshold - scores) / factor
) > (2 * jitter_eps)
# apply mask
masked_gates = scores.masked_fill(mask_logits_threshold, float('-inf'))
if training:
selected_experts = (
masked_gates - torch.empty_like(masked_gates, memory_format=torch.legacy_contiguous_format).exponential_().log()
).max(dim=-1)[1].unsqueeze(-1) # gumbel sampling, more robust than than the multinomial method
else:
selected_experts = max_ind
# compute scores for gradients
masked_gates = torch.softmax(masked_gates, dim=-1)
multiplier_o = masked_gates.gather(dim=-1, index=selected_experts)
if training:
# compute midpoint mask
max_scores, max_ind = masked_gates.max(dim=-1, keepdim=True)
mask_for_one = torch.logical_or(
selected_experts == max_ind,
torch.rand_like(max_scores) > 0.75 # Heun's third-order method: f(x) - f(0) = .25 f'(x) + .75 f'(x/3.)
)
# 1 -> 1.0 & 0 -> 1./3: lambda x: (x + 0.5) / 1.5
mask_for_one = torch.add(0.3333, mask_for_one, alpha=0.6667).type_as(masked_gates)
multiplier = mp.apply(
scores,
multiplier_o,
selected_experts,
masked_gates,
mask_for_one,
)
else:
multiplier = multiplier_o
# masked out first expert
masked_scores = torch.scatter(
scores,
-1,
selected_experts,
float('-inf'),
)
with torch.no_grad():
# compute mask for sparsity
mask_logits_threshold, max_ind = masked_scores.max(dim=-1, keepdim=True)
factor = scores.abs().clamp(min=mask_logits_threshold)
mask_logits_threshold = (
(mask_logits_threshold - scores) / factor
) > (2 * jitter_eps)
# apply mask
masked_gates_top2 = masked_scores.masked_fill(mask_logits_threshold, float('-inf'))
if training:
selected_experts_top2 = (
masked_gates_top2 - torch.empty_like(masked_gates_top2, memory_format=torch.legacy_contiguous_format).exponential_().log()
).max(dim=-1)[1].unsqueeze(-1) # gumbel sampling, more robust than than the multinomial method
else:
selected_experts_top2 = max_ind
# compute scores for gradients
masked_gates_top2 = torch.softmax(masked_gates_top2, dim=-1)
multiplier_top2_o = masked_gates_top2.gather(dim=-1, index=selected_experts_top2)
if training:
# compute midpoint mask
max_scores, max_ind = masked_gates_top2.max(dim=-1, keepdim=True)
mask_for_one_top2 = torch.logical_or(
selected_experts_top2 == max_ind,
torch.rand_like(max_scores).uniform_() > 0.75 # Heun's third-order method: f(x) - f(0) = .25 f'(x) + .75 f'(x/3.)
)
# 1 -> 1.0 & 0 -> 1./3: lambda x: (x + 0.5) / 1.5
mask_for_one_top2 = torch.add(0.3333, mask_for_one_top2, alpha=0.6667).type_as(masked_gates_top2)
multiplier_top2 = mp.apply(
scores,
multiplier_top2_o,
selected_experts_top2,
masked_gates_top2,
mask_for_one_top2,
)
else:
multiplier_top2 = multiplier_top2_o
multiplier = torch.concat((multiplier, multiplier_top2), dim=-1)
selected_experts = torch.concat((selected_experts, selected_experts_top2), dim=-1)
return (
multiplier,
selected_experts,
)
def load_balancing_loss_func(
gate_logits: torch.Tensor, num_experts: torch.Tensor = None, top_k=2, attention_mask: Optional[torch.Tensor] = None
) -> float:
if gate_logits is None or not isinstance(gate_logits, tuple):
return 0
if isinstance(gate_logits, tuple):
compute_device = gate_logits[0].device
concatenated_gate_logits = torch.cat([layer_gate.to(compute_device) for layer_gate in gate_logits], dim=0)
routing_weights = F.softmax(concatenated_gate_logits, dim=-1)
_, selected_experts = torch.topk(routing_weights, top_k, dim=-1)
expert_mask = F.one_hot(selected_experts, num_experts).permute(2, 1, 0)
if attention_mask is None:
# Compute the percentage of tokens routed to each experts
tokens_per_expert = torch.mean(expert_mask.float(), dim=0)
# Compute the average probability of routing to these experts
router_prob_per_expert = torch.mean(routing_weights, dim=0)
else:
batch_size, sequence_length = attention_mask.shape
num_hidden_layers = concatenated_gate_logits.shape[0] // (batch_size * sequence_length)
# Compute the mask that masks all padding tokens as 0 with the same shape of expert_mask
expert_attention_mask = (
attention_mask[None, :, :, None, None]
.expand((num_hidden_layers, batch_size, sequence_length, top_k, num_experts))
.reshape(-1, top_k, num_experts)
.to(compute_device)
)
# Compute the percentage of tokens routed to each experts
tokens_per_expert = torch.sum(expert_mask.float() * expert_attention_mask, dim=0) / torch.sum(
expert_attention_mask, dim=0
)
# Compute the mask that masks all padding tokens as 0 with the same shape of tokens_per_expert
router_per_expert_attention_mask = (
attention_mask[None, :, :, None]
.expand((num_hidden_layers, batch_size, sequence_length, num_experts))
.reshape(-1, num_experts)
.to(compute_device)
)
# Compute the average probability of routing to these experts
router_prob_per_expert = torch.sum(routing_weights * router_per_expert_attention_mask, dim=0) / torch.sum(
router_per_expert_attention_mask, dim=0
)
overall_loss = torch.sum(tokens_per_expert * router_prob_per_expert.unsqueeze(0))
return overall_loss * num_experts
class RasphiMoERotaryEmbedding(nn.Module):
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
super().__init__()
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(device) / dim))
self.register_buffer("inv_freq", inv_freq)
self.max_seq_len_cached = max_position_embeddings
t = torch.arange(self.max_seq_len_cached, device=self.inv_freq.device, dtype=self.inv_freq.dtype)
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
emb = torch.cat((freqs, freqs), dim=-1)
self.register_buffer("cos_cached", emb.cos()[None, None, :, :], persistent=False)
self.register_buffer("sin_cached", emb.sin()[None, None, :, :], persistent=False)
def forward(self, x, seq_len=None):
if seq_len > self.max_seq_len_cached:
self._set_cos_sin_cache(seq_len, device=x.device, dtype=x.dtype)
return (
self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
)
class LinearScalingRotaryEmbedding(RasphiMoERotaryEmbedding):
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
self.scaling_factor = scaling_factor
super().__init__(dim, max_position_embeddings, base, device)
def _set_cos_sin_cache(self, seq_len, device, dtype):
self.max_seq_len_cached = seq_len
t = torch.arange(self.max_seq_len_cached, device=device, dtype=dtype)
t = t / self.scaling_factor
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
emb = torch.cat((freqs, freqs), dim=-1).to(device)
self.register_buffer("cos_cached", emb.cos()[None, None, :, :], persistent=False)
self.register_buffer("sin_cached", emb.sin()[None, None, :, :], persistent=False)
class DynamicNTKScalingRotaryEmbedding(RasphiMoERotaryEmbedding):
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
self.scaling_factor = scaling_factor
super().__init__(dim, max_position_embeddings, base, device)
def _set_cos_sin_cache(self, seq_len, device, dtype):
self.max_seq_len_cached = seq_len
if seq_len > self.max_seq_len_cached:
base = self.base * ((self.scaling_factor * seq_len / self.max_seq_len_cached) - (self.scaling_factor - 1)) ** (self.dim / (self.dim - 2))
inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
self.register_buffer("inv_freq", inv_freq)
t = torch.arange(self.max_seq_len_cached, device=device, dtype=dtype)
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
emb = torch.cat((freqs, freqs), dim=-1).to(device)
self.register_buffer("cos_cached", emb.cos()[None, None, :, :], persistent=False)
self.register_buffer("sin_cached", emb.sin()[None, None, :, :], persistent=False)
def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
# The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
cos = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
sin = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
from transformers import AutoModelForCausalLM
AutoModelForCausalLM.register("rasphi", RasphiForCausalLM)