File size: 8,495 Bytes
0de6955
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
---
license: apache-2.0
language:
- en
tags:
- chat
- audio
---

# Qwen2-Audio-7B-Instruct

## Introduction

Qwen2-Audio is the new series of Qwen large audio-language models. Qwen2-Audio is capable of accepting various audio signal inputs and performing audio analysis or direct textual responses with regard to speech instructions. We introduce two distinct audio interaction modes:

* voice chat: users can freely engage in voice interactions with Qwen2-Audio without text input;

* audio analysis: users could provide audio and text instructions for analysis during the interaction;

We release Qwen2-Audio-7B and Qwen2-Audio-7B-Instruct, which are pretrained model and chat model respectively. 

For more details, please refer to our [blog](https://qwenlm.github.io/blog/qwen2/), [GitHub](https://github.com/QwenLM/Qwen2-Audio), and [Report](https://www.arxiv.org/abs/2407.10759).
<br>


## Requirements
The code of Qwen2-Audio has been in the latest Hugging face transformers and we advise you to install `transformers>=4.44.0`, or you might encounter the following error:
```
KeyError: 'qwen2-audio'
```

## Quickstart

In the following, we demonstrate how to use `Qwen2-Audio-7B-Instrucct` for the inference, supporting both voice chat and audio analysis modes. Note that we have used the ChatML format for dialog, in this demo we show how to leverage `apply_chat_template` for this purpose.

### Voice Chat Inference
In the voice chat mode, users can freely engage in voice interactions with Qwen2-Audio without text input:
```python
from transformers import Qwen2AudioForConditionalGeneration, AutoProcessor
from transformers.pipelines.audio_utils import ffmpeg_read
import requests

processor = AutoProcessor.from_pretrained("Qwen/Qwen2-Audio-7B-Instruct")
model = Qwen2AudioForConditionalGeneration.from_pretrained("Qwen/Qwen2-Audio-7B-Instruct", device_map="auto")

conversation = [
            {"role": "user", "content": [
                {"type": "audio", "audio_url": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen2-Audio/audio/guess_age_gender.wav"},
            ]},
            {"role": "assistant", "content": "Yes, the speaker is female and in her twenties."},
            {"role": "user", "content": [
                {"type": "audio", "audio_url": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen2-Audio/audio/translate_to_chinese.wav"},
            ]},
        ]
text = processor.apply_chat_template(conversation, add_generation_prompt=True, tokenize=False)
audios = []
for message in conversation:
    if isinstance(message["content"], list):
        for ele in message["content"]:
            if ele["type"] == "audio":
                audios.append(ffmpeg_read(requests.get(ele['audio_url']).content, sampling_rate=processor.feature_extractor.sampling_rate))

inputs = processor(text=text, audios=audios, return_tensors="pt", padding=True)
inputs.input_ids = inputs.input_ids.to("cuda")

generate_ids = model.generate(**inputs, max_length=256)
generate_ids = generate_ids[:, inputs.input_ids.size(1):]

response = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
```

### Audio Analysis Inference
In the audio analysis, users could provide both audio and text instructions for analysis:
```python
from transformers import Qwen2AudioForConditionalGeneration, AutoProcessor
from transformers.pipelines.audio_utils import ffmpeg_read
import requests

processor = AutoProcessor.from_pretrained("Qwen/Qwen2-Audio-7B-Instruct")
model = Qwen2AudioForConditionalGeneration.from_pretrained("Qwen/Qwen2-Audio-7B-Instruct", device_map="auto")

conversation = [
            {'role': 'system', 'content': 'You are a helpful assistant.'}, 
            {"role": "user", "content": [
                {"type": "audio", "audio_url": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen2-Audio/audio/glass-breaking-151256.mp3"},
                {"type": "text", "text": "What's that sound?"},
            ]},
            {"role": "assistant", "content": "It is the sound of glass shattering."},
            {"role": "user", "content": [
                {"type": "text", "text": "What can you do when you hear that?"},
            ]},
            {"role": "assistant", "content": "Stay alert and cautious, and check if anyone is hurt or if there is any damage to property."},
            {"role": "user", "content": [
                {"type": "audio", "audio_url": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen2-Audio/audio/1272-128104-0000.flac"},
                {"type": "text", "text": "What does the person say?"},
            ]},
        ]
text = processor.apply_chat_template(conversation, add_generation_prompt=True, tokenize=False)
audios = []
for message in conversation:
    if isinstance(message["content"], list):
        for ele in message["content"]:
            if ele["type"] == "audio":
                audios.append(ffmpeg_read(requests.get(ele['audio_url']).content, sampling_rate=processor.feature_extractor.sampling_rate))

inputs = processor(text=text, audios=audios, return_tensors="pt", padding=True)
inputs.input_ids = inputs.input_ids.to("cuda")

generate_ids = model.generate(**inputs, max_length=256)
generate_ids = generate_ids[:, inputs.input_ids.size(1):]

response = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]

print("prompt:\n", text)
print("response:\n", response)
```

### Batch Inference
We also support batch inference:
```python
from transformers import Qwen2AudioForConditionalGeneration, AutoProcessor
from transformers.pipelines.audio_utils import ffmpeg_read
import requests

processor = AutoProcessor.from_pretrained("Qwen/Qwen2-Audio-7B-Instruct")
model = Qwen2AudioForConditionalGeneration.from_pretrained("Qwen/Qwen2-Audio-7B-Instruct", device_map="auto")

conversation1 = [
            {"role": "user", "content": [
                {"type": "audio", "audio_url": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen2-Audio/audio/glass-breaking-151256.mp3"},
                {"type": "text", "text": "What's that sound?"},
            ]},
            {"role": "assistant", "content": "It is the sound of glass shattering."},
            {"role": "user", "content": [
                {"type": "audio", "audio_url": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen2-Audio/audio/f2641_0_throatclearing.wav"},
                {"type": "text", "text": "What can you hear?"},
            ]}
        ]

conversation2 = [
            {"role": "user", "content": [
                {"type": "audio", "audio_url": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen2-Audio/audio/1272-128104-0000.flac"},
                {"type": "text", "text": "What does the person say?"},
            ]},
        ]

conversations = [conversation1, conversation2]

text = [processor.apply_chat_template(conversation, add_generation_prompt=True, tokenize=False) for conversation in conversations]

audios = []
for conversation in conversations:
    for message in conversation:
        if isinstance(message["content"], list):
            for ele in message["content"]:
                if ele["type"] == "audio":
                    audios.append(ffmpeg_read(requests.get(ele['audio_url']).content, sampling_rate=processor.feature_extractor.sampling_rate))

inputs = processor(text=text, audios=audios, return_tensors="pt", padding=True)
inputs['input_ids'] = inputs['input_ids'].to("cuda")
inputs.input_ids = inputs.input_ids.to("cuda")

generate_ids = model.generate(**inputs, max_length=256)
generate_ids = generate_ids[:, inputs.input_ids.size(1):]

response = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)
```

## Citation

If you find our work helpful, feel free to give us a cite.

```BibTeX
@article{Qwen2-Audio,
  title={Qwen2-Audio Technical Report},
  author={Chu, Yunfei and Xu, Jin and Yang, Qian and Wei, Haojie and Wei, Xipin and Guo,  Zhifang and Leng, Yichong and Lv, Yuanjun and He, Jinzheng and Lin, Junyang and Zhou, Chang and Zhou, Jingren},
  journal={arXiv preprint arXiv:2407.10759},
  year={2024}
}
```

```BibTeX
@article{Qwen-Audio,
  title={Qwen-Audio: Advancing Universal Audio Understanding via Unified Large-Scale Audio-Language Models},
  author={Chu, Yunfei and Xu, Jin and Zhou, Xiaohuan and Yang, Qian and Zhang, Shiliang and Yan, Zhijie  and Zhou, Chang and Zhou, Jingren},
  journal={arXiv preprint arXiv:2311.07919},
  year={2023}
}
```