File size: 4,213 Bytes
dacc045 b351368 dacc045 b351368 8f9d93c b351368 8f9d93c dacc045 b351368 6122d98 b351368 6122d98 f7114b3 6122d98 dacc045 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 |
---
language: ru
datasets:
- mozilla-foundation/common_voice_8_0
metrics:
- wer
- cer
tags:
- audio
- automatic-speech-recognition
- generated_from_trainer
- hf-asr-leaderboard
- mozilla-foundation/common_voice_8_0
- robust-speech-event
- speech
model-index:
- name: XLS-R 1B Wav2Vec2 Russian by Rasmus Toivanen
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 8
type: mozilla-foundation/common_voice_8_0
args: ru
metrics:
- name: Test WER
type: wer
value: 10.83
- name: Test CER
type: cer
value: 2.41
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Robust Speech Event - Dev Data
type: speech-recognition-community-v2/dev_data
args: ru
metrics:
- name: Test WER
type: wer
value: 37.71
- name: Test CER
type: cer
value: 12.98
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Robust Speech Event - Test Data
type: speech-recognition-community-v2/eval_data
args: ru
metrics:
- name: Test WER
type: wer
value: 31.89
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-xlsr-1b-ru
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the common_voice dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1352
- Wer: 0.0971
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 0.5462 | 0.35 | 500 | 0.4027 | 0.3575 |
| 0.498 | 0.69 | 1000 | 0.2588 | 0.2513 |
| 0.4279 | 1.04 | 1500 | 0.2265 | 0.2204 |
| 0.4099 | 1.38 | 2000 | 0.2189 | 0.1979 |
| 0.4688 | 1.73 | 2500 | 0.2100 | 0.1920 |
| 0.2241 | 2.07 | 3000 | 0.1980 | 0.1767 |
| 0.2056 | 2.42 | 3500 | 0.2020 | 0.1683 |
| 0.3423 | 2.76 | 4000 | 0.1862 | 0.1606 |
| 0.2478 | 3.11 | 4500 | 0.1787 | 0.1563 |
| 0.3079 | 3.45 | 5000 | 0.1759 | 0.1555 |
| 0.2477 | 3.8 | 5500 | 0.1713 | 0.1423 |
| 0.1718 | 4.14 | 6000 | 0.1695 | 0.1391 |
| 0.1675 | 4.49 | 6500 | 0.1677 | 0.1372 |
| 0.1631 | 4.83 | 7000 | 0.1652 | 0.1333 |
| 0.1429 | 5.18 | 7500 | 0.1605 | 0.1308 |
| 0.1505 | 5.52 | 8000 | 0.1612 | 0.1245 |
| 0.1385 | 5.87 | 8500 | 0.1487 | 0.1225 |
| 0.1285 | 6.22 | 9000 | 0.1526 | 0.1201 |
| 0.1153 | 6.56 | 9500 | 0.1464 | 0.1172 |
| 0.1159 | 6.91 | 10000 | 0.1505 | 0.1143 |
| 0.1061 | 7.25 | 10500 | 0.1444 | 0.1106 |
| 0.1016 | 7.6 | 11000 | 0.1427 | 0.1075 |
| 0.1125 | 7.94 | 11500 | 0.1386 | 0.1045 |
| 0.0937 | 8.29 | 12000 | 0.1403 | 0.1022 |
| 0.1059 | 8.63 | 12500 | 0.1406 | 0.1022 |
| 0.0857 | 8.98 | 13000 | 0.1372 | 0.0992 |
| 0.0901 | 9.32 | 13500 | 0.1380 | 0.0977 |
| 0.0913 | 9.67 | 14000 | 0.1352 | 0.0971 |
### Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu102
- Datasets 1.18.3
- Tokenizers 0.11.0
|