File size: 4,213 Bytes
dacc045
b351368
 
 
 
 
 
dacc045
b351368
 
8f9d93c
 
 
b351368
8f9d93c
dacc045
b351368
 
6122d98
b351368
 
 
 
 
 
 
6122d98
 
 
 
 
 
 
f7114b3
 
 
 
 
 
 
6122d98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dacc045
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
---
language: ru
datasets:
- mozilla-foundation/common_voice_8_0
metrics:
- wer
- cer
tags:
- audio
- automatic-speech-recognition
- generated_from_trainer
- hf-asr-leaderboard
- mozilla-foundation/common_voice_8_0
- robust-speech-event
- speech
model-index:
- name: XLS-R 1B Wav2Vec2 Russian by Rasmus Toivanen
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Common Voice 8
      type: mozilla-foundation/common_voice_8_0
      args: ru
    metrics:
    - name: Test WER
      type: wer
      value: 10.83
    - name: Test CER
      type: cer
      value: 2.41
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Robust Speech Event - Dev Data
      type: speech-recognition-community-v2/dev_data
      args: ru
    metrics:
    - name: Test WER
      type: wer
      value: 37.71
    - name: Test CER
      type: cer
      value: 12.98
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Robust Speech Event - Test Data
      type: speech-recognition-community-v2/eval_data
      args: ru
    metrics:
    - name: Test WER
      type: wer
      value: 31.89
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-xlsr-1b-ru

This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the common_voice dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1352
- Wer: 0.0971

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 10
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Wer    |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 0.5462        | 0.35  | 500   | 0.4027          | 0.3575 |
| 0.498         | 0.69  | 1000  | 0.2588          | 0.2513 |
| 0.4279        | 1.04  | 1500  | 0.2265          | 0.2204 |
| 0.4099        | 1.38  | 2000  | 0.2189          | 0.1979 |
| 0.4688        | 1.73  | 2500  | 0.2100          | 0.1920 |
| 0.2241        | 2.07  | 3000  | 0.1980          | 0.1767 |
| 0.2056        | 2.42  | 3500  | 0.2020          | 0.1683 |
| 0.3423        | 2.76  | 4000  | 0.1862          | 0.1606 |
| 0.2478        | 3.11  | 4500  | 0.1787          | 0.1563 |
| 0.3079        | 3.45  | 5000  | 0.1759          | 0.1555 |
| 0.2477        | 3.8   | 5500  | 0.1713          | 0.1423 |
| 0.1718        | 4.14  | 6000  | 0.1695          | 0.1391 |
| 0.1675        | 4.49  | 6500  | 0.1677          | 0.1372 |
| 0.1631        | 4.83  | 7000  | 0.1652          | 0.1333 |
| 0.1429        | 5.18  | 7500  | 0.1605          | 0.1308 |
| 0.1505        | 5.52  | 8000  | 0.1612          | 0.1245 |
| 0.1385        | 5.87  | 8500  | 0.1487          | 0.1225 |
| 0.1285        | 6.22  | 9000  | 0.1526          | 0.1201 |
| 0.1153        | 6.56  | 9500  | 0.1464          | 0.1172 |
| 0.1159        | 6.91  | 10000 | 0.1505          | 0.1143 |
| 0.1061        | 7.25  | 10500 | 0.1444          | 0.1106 |
| 0.1016        | 7.6   | 11000 | 0.1427          | 0.1075 |
| 0.1125        | 7.94  | 11500 | 0.1386          | 0.1045 |
| 0.0937        | 8.29  | 12000 | 0.1403          | 0.1022 |
| 0.1059        | 8.63  | 12500 | 0.1406          | 0.1022 |
| 0.0857        | 8.98  | 13000 | 0.1372          | 0.0992 |
| 0.0901        | 9.32  | 13500 | 0.1380          | 0.0977 |
| 0.0913        | 9.67  | 14000 | 0.1352          | 0.0971 |


### Framework versions

- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu102
- Datasets 1.18.3
- Tokenizers 0.11.0