RMHalak commited on
Commit
02a486f
1 Parent(s): f33a462

Task: SequenceClassification

Browse files
README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: RMHalak/opt-6.7b-GPTQ-4bits-128g-wikitext2
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.10.0
adapter_config.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "RMHalak/opt-6.7b-GPTQ-4bits-128g-wikitext2",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": [
18
+ "score"
19
+ ],
20
+ "peft_type": "LORA",
21
+ "r": 8,
22
+ "rank_pattern": {},
23
+ "revision": null,
24
+ "target_modules": [
25
+ "q_proj",
26
+ "fc1",
27
+ "fc2",
28
+ "v_proj",
29
+ "k_proj",
30
+ "out_proj"
31
+ ],
32
+ "task_type": "SEQ_CLS",
33
+ "use_dora": false,
34
+ "use_rslora": false
35
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4db410d80b7bce70ebcb4d615cf2c80e528d6ad76af0252cf9a32378779d9343
3
+ size 75566824
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "</s>",
4
+ "lstrip": false,
5
+ "normalized": true,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "</s>",
19
+ "lstrip": false,
20
+ "normalized": true,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "1": {
6
+ "content": "<pad>",
7
+ "lstrip": false,
8
+ "normalized": true,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "2": {
14
+ "content": "</s>",
15
+ "lstrip": false,
16
+ "normalized": true,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ }
21
+ },
22
+ "bos_token": "</s>",
23
+ "clean_up_tokenization_spaces": true,
24
+ "eos_token": "</s>",
25
+ "errors": "replace",
26
+ "model_max_length": 1000000000000000019884624838656,
27
+ "pad_token": "</s>",
28
+ "tokenizer_class": "GPT2Tokenizer",
29
+ "unk_token": "</s>"
30
+ }
trainer_state-opt-gptq-QLORA-super_glue-wsc-sequence_classification.json ADDED
@@ -0,0 +1,1150 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 10.0,
5
+ "eval_steps": 1,
6
+ "global_step": 70,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.14285714285714285,
13
+ "grad_norm": 30.89147186279297,
14
+ "learning_rate": 2.5e-05,
15
+ "loss": 1.1486,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.14285714285714285,
20
+ "eval_accuracy": 0.3712121212121212,
21
+ "eval_loss": 1.3744148015975952,
22
+ "eval_runtime": 1.5448,
23
+ "eval_samples_per_second": 85.447,
24
+ "eval_steps_per_second": 2.589,
25
+ "step": 1
26
+ },
27
+ {
28
+ "epoch": 0.2857142857142857,
29
+ "grad_norm": 34.26921081542969,
30
+ "learning_rate": 5e-05,
31
+ "loss": 1.2255,
32
+ "step": 2
33
+ },
34
+ {
35
+ "epoch": 0.2857142857142857,
36
+ "eval_accuracy": 0.3787878787878788,
37
+ "eval_loss": 1.354632019996643,
38
+ "eval_runtime": 1.4924,
39
+ "eval_samples_per_second": 88.447,
40
+ "eval_steps_per_second": 2.68,
41
+ "step": 2
42
+ },
43
+ {
44
+ "epoch": 0.42857142857142855,
45
+ "grad_norm": 33.26761245727539,
46
+ "learning_rate": 4.9264705882352944e-05,
47
+ "loss": 1.2041,
48
+ "step": 3
49
+ },
50
+ {
51
+ "epoch": 0.42857142857142855,
52
+ "eval_accuracy": 0.3787878787878788,
53
+ "eval_loss": 1.2853270769119263,
54
+ "eval_runtime": 1.4949,
55
+ "eval_samples_per_second": 88.301,
56
+ "eval_steps_per_second": 2.676,
57
+ "step": 3
58
+ },
59
+ {
60
+ "epoch": 0.5714285714285714,
61
+ "grad_norm": 34.27346420288086,
62
+ "learning_rate": 4.8529411764705885e-05,
63
+ "loss": 1.1975,
64
+ "step": 4
65
+ },
66
+ {
67
+ "epoch": 0.5714285714285714,
68
+ "eval_accuracy": 0.3787878787878788,
69
+ "eval_loss": 1.2138265371322632,
70
+ "eval_runtime": 1.4955,
71
+ "eval_samples_per_second": 88.263,
72
+ "eval_steps_per_second": 2.675,
73
+ "step": 4
74
+ },
75
+ {
76
+ "epoch": 0.7142857142857143,
77
+ "grad_norm": 26.523130416870117,
78
+ "learning_rate": 4.7794117647058826e-05,
79
+ "loss": 1.012,
80
+ "step": 5
81
+ },
82
+ {
83
+ "epoch": 0.7142857142857143,
84
+ "eval_accuracy": 0.4166666666666667,
85
+ "eval_loss": 1.1368831396102905,
86
+ "eval_runtime": 1.5429,
87
+ "eval_samples_per_second": 85.554,
88
+ "eval_steps_per_second": 2.593,
89
+ "step": 5
90
+ },
91
+ {
92
+ "epoch": 0.8571428571428571,
93
+ "grad_norm": 26.6580753326416,
94
+ "learning_rate": 4.705882352941177e-05,
95
+ "loss": 0.9865,
96
+ "step": 6
97
+ },
98
+ {
99
+ "epoch": 0.8571428571428571,
100
+ "eval_accuracy": 0.4166666666666667,
101
+ "eval_loss": 1.0571379661560059,
102
+ "eval_runtime": 1.5511,
103
+ "eval_samples_per_second": 85.102,
104
+ "eval_steps_per_second": 2.579,
105
+ "step": 6
106
+ },
107
+ {
108
+ "epoch": 1.0,
109
+ "grad_norm": 21.781848907470703,
110
+ "learning_rate": 4.632352941176471e-05,
111
+ "loss": 0.8759,
112
+ "step": 7
113
+ },
114
+ {
115
+ "epoch": 1.0,
116
+ "eval_accuracy": 0.42424242424242425,
117
+ "eval_loss": 0.9770345687866211,
118
+ "eval_runtime": 1.4987,
119
+ "eval_samples_per_second": 88.077,
120
+ "eval_steps_per_second": 2.669,
121
+ "step": 7
122
+ },
123
+ {
124
+ "epoch": 1.1428571428571428,
125
+ "grad_norm": 11.7108154296875,
126
+ "learning_rate": 4.558823529411765e-05,
127
+ "loss": 0.7938,
128
+ "step": 8
129
+ },
130
+ {
131
+ "epoch": 1.1428571428571428,
132
+ "eval_accuracy": 0.42424242424242425,
133
+ "eval_loss": 0.9049923419952393,
134
+ "eval_runtime": 1.4998,
135
+ "eval_samples_per_second": 88.013,
136
+ "eval_steps_per_second": 2.667,
137
+ "step": 8
138
+ },
139
+ {
140
+ "epoch": 1.2857142857142856,
141
+ "grad_norm": 14.725457191467285,
142
+ "learning_rate": 4.485294117647059e-05,
143
+ "loss": 0.7778,
144
+ "step": 9
145
+ },
146
+ {
147
+ "epoch": 1.2857142857142856,
148
+ "eval_accuracy": 0.42424242424242425,
149
+ "eval_loss": 0.8363458514213562,
150
+ "eval_runtime": 1.4943,
151
+ "eval_samples_per_second": 88.337,
152
+ "eval_steps_per_second": 2.677,
153
+ "step": 9
154
+ },
155
+ {
156
+ "epoch": 1.4285714285714286,
157
+ "grad_norm": 14.5535249710083,
158
+ "learning_rate": 4.411764705882353e-05,
159
+ "loss": 0.7377,
160
+ "step": 10
161
+ },
162
+ {
163
+ "epoch": 1.4285714285714286,
164
+ "eval_accuracy": 0.42424242424242425,
165
+ "eval_loss": 0.7730409502983093,
166
+ "eval_runtime": 1.5479,
167
+ "eval_samples_per_second": 85.277,
168
+ "eval_steps_per_second": 2.584,
169
+ "step": 10
170
+ },
171
+ {
172
+ "epoch": 1.5714285714285714,
173
+ "grad_norm": 16.812053680419922,
174
+ "learning_rate": 4.3382352941176474e-05,
175
+ "loss": 0.7563,
176
+ "step": 11
177
+ },
178
+ {
179
+ "epoch": 1.5714285714285714,
180
+ "eval_accuracy": 0.42424242424242425,
181
+ "eval_loss": 0.7208273410797119,
182
+ "eval_runtime": 1.5435,
183
+ "eval_samples_per_second": 85.519,
184
+ "eval_steps_per_second": 2.591,
185
+ "step": 11
186
+ },
187
+ {
188
+ "epoch": 1.7142857142857144,
189
+ "grad_norm": 10.605402946472168,
190
+ "learning_rate": 4.2647058823529415e-05,
191
+ "loss": 0.755,
192
+ "step": 12
193
+ },
194
+ {
195
+ "epoch": 1.7142857142857144,
196
+ "eval_accuracy": 0.5681818181818182,
197
+ "eval_loss": 0.6822857856750488,
198
+ "eval_runtime": 1.5006,
199
+ "eval_samples_per_second": 87.968,
200
+ "eval_steps_per_second": 2.666,
201
+ "step": 12
202
+ },
203
+ {
204
+ "epoch": 1.8571428571428572,
205
+ "grad_norm": 5.790449619293213,
206
+ "learning_rate": 4.1911764705882356e-05,
207
+ "loss": 0.7331,
208
+ "step": 13
209
+ },
210
+ {
211
+ "epoch": 1.8571428571428572,
212
+ "eval_accuracy": 0.6287878787878788,
213
+ "eval_loss": 0.6623136401176453,
214
+ "eval_runtime": 1.4474,
215
+ "eval_samples_per_second": 91.196,
216
+ "eval_steps_per_second": 2.764,
217
+ "step": 13
218
+ },
219
+ {
220
+ "epoch": 2.0,
221
+ "grad_norm": 7.441537857055664,
222
+ "learning_rate": 4.11764705882353e-05,
223
+ "loss": 0.774,
224
+ "step": 14
225
+ },
226
+ {
227
+ "epoch": 2.0,
228
+ "eval_accuracy": 0.6287878787878788,
229
+ "eval_loss": 0.6604166626930237,
230
+ "eval_runtime": 1.5501,
231
+ "eval_samples_per_second": 85.155,
232
+ "eval_steps_per_second": 2.58,
233
+ "step": 14
234
+ },
235
+ {
236
+ "epoch": 2.142857142857143,
237
+ "grad_norm": 2.9518423080444336,
238
+ "learning_rate": 4.044117647058824e-05,
239
+ "loss": 0.6674,
240
+ "step": 15
241
+ },
242
+ {
243
+ "epoch": 2.142857142857143,
244
+ "eval_accuracy": 0.5984848484848485,
245
+ "eval_loss": 0.6644145846366882,
246
+ "eval_runtime": 1.498,
247
+ "eval_samples_per_second": 88.118,
248
+ "eval_steps_per_second": 2.67,
249
+ "step": 15
250
+ },
251
+ {
252
+ "epoch": 2.2857142857142856,
253
+ "grad_norm": 5.2332682609558105,
254
+ "learning_rate": 3.970588235294117e-05,
255
+ "loss": 0.7251,
256
+ "step": 16
257
+ },
258
+ {
259
+ "epoch": 2.2857142857142856,
260
+ "eval_accuracy": 0.5909090909090909,
261
+ "eval_loss": 0.6694009900093079,
262
+ "eval_runtime": 1.5426,
263
+ "eval_samples_per_second": 85.572,
264
+ "eval_steps_per_second": 2.593,
265
+ "step": 16
266
+ },
267
+ {
268
+ "epoch": 2.4285714285714284,
269
+ "grad_norm": 15.631101608276367,
270
+ "learning_rate": 3.897058823529412e-05,
271
+ "loss": 0.7931,
272
+ "step": 17
273
+ },
274
+ {
275
+ "epoch": 2.4285714285714284,
276
+ "eval_accuracy": 0.5833333333333334,
277
+ "eval_loss": 0.6746625900268555,
278
+ "eval_runtime": 1.5454,
279
+ "eval_samples_per_second": 85.415,
280
+ "eval_steps_per_second": 2.588,
281
+ "step": 17
282
+ },
283
+ {
284
+ "epoch": 2.571428571428571,
285
+ "grad_norm": 8.961908340454102,
286
+ "learning_rate": 3.8235294117647055e-05,
287
+ "loss": 0.7463,
288
+ "step": 18
289
+ },
290
+ {
291
+ "epoch": 2.571428571428571,
292
+ "eval_accuracy": 0.5757575757575758,
293
+ "eval_loss": 0.683046281337738,
294
+ "eval_runtime": 1.5455,
295
+ "eval_samples_per_second": 85.408,
296
+ "eval_steps_per_second": 2.588,
297
+ "step": 18
298
+ },
299
+ {
300
+ "epoch": 2.7142857142857144,
301
+ "grad_norm": 1.4260056018829346,
302
+ "learning_rate": 3.7500000000000003e-05,
303
+ "loss": 0.6853,
304
+ "step": 19
305
+ },
306
+ {
307
+ "epoch": 2.7142857142857144,
308
+ "eval_accuracy": 0.5833333333333334,
309
+ "eval_loss": 0.6882531046867371,
310
+ "eval_runtime": 1.4995,
311
+ "eval_samples_per_second": 88.032,
312
+ "eval_steps_per_second": 2.668,
313
+ "step": 19
314
+ },
315
+ {
316
+ "epoch": 2.857142857142857,
317
+ "grad_norm": 4.879419326782227,
318
+ "learning_rate": 3.6764705882352945e-05,
319
+ "loss": 0.7112,
320
+ "step": 20
321
+ },
322
+ {
323
+ "epoch": 2.857142857142857,
324
+ "eval_accuracy": 0.5833333333333334,
325
+ "eval_loss": 0.6945282816886902,
326
+ "eval_runtime": 1.5509,
327
+ "eval_samples_per_second": 85.109,
328
+ "eval_steps_per_second": 2.579,
329
+ "step": 20
330
+ },
331
+ {
332
+ "epoch": 3.0,
333
+ "grad_norm": 2.966745615005493,
334
+ "learning_rate": 3.6029411764705886e-05,
335
+ "loss": 0.7261,
336
+ "step": 21
337
+ },
338
+ {
339
+ "epoch": 3.0,
340
+ "eval_accuracy": 0.5378787878787878,
341
+ "eval_loss": 0.705810546875,
342
+ "eval_runtime": 1.5516,
343
+ "eval_samples_per_second": 85.075,
344
+ "eval_steps_per_second": 2.578,
345
+ "step": 21
346
+ },
347
+ {
348
+ "epoch": 3.142857142857143,
349
+ "grad_norm": 1.4628124237060547,
350
+ "learning_rate": 3.529411764705883e-05,
351
+ "loss": 0.7183,
352
+ "step": 22
353
+ },
354
+ {
355
+ "epoch": 3.142857142857143,
356
+ "eval_accuracy": 0.5,
357
+ "eval_loss": 0.7155613899230957,
358
+ "eval_runtime": 1.5506,
359
+ "eval_samples_per_second": 85.127,
360
+ "eval_steps_per_second": 2.58,
361
+ "step": 22
362
+ },
363
+ {
364
+ "epoch": 3.2857142857142856,
365
+ "grad_norm": 2.861602306365967,
366
+ "learning_rate": 3.455882352941177e-05,
367
+ "loss": 0.714,
368
+ "step": 23
369
+ },
370
+ {
371
+ "epoch": 3.2857142857142856,
372
+ "eval_accuracy": 0.5303030303030303,
373
+ "eval_loss": 0.7245516777038574,
374
+ "eval_runtime": 1.5005,
375
+ "eval_samples_per_second": 87.969,
376
+ "eval_steps_per_second": 2.666,
377
+ "step": 23
378
+ },
379
+ {
380
+ "epoch": 3.4285714285714284,
381
+ "grad_norm": 5.409416675567627,
382
+ "learning_rate": 3.382352941176471e-05,
383
+ "loss": 0.7123,
384
+ "step": 24
385
+ },
386
+ {
387
+ "epoch": 3.4285714285714284,
388
+ "eval_accuracy": 0.48484848484848486,
389
+ "eval_loss": 0.7311227321624756,
390
+ "eval_runtime": 1.5492,
391
+ "eval_samples_per_second": 85.203,
392
+ "eval_steps_per_second": 2.582,
393
+ "step": 24
394
+ },
395
+ {
396
+ "epoch": 3.571428571428571,
397
+ "grad_norm": 5.741272926330566,
398
+ "learning_rate": 3.308823529411765e-05,
399
+ "loss": 0.7952,
400
+ "step": 25
401
+ },
402
+ {
403
+ "epoch": 3.571428571428571,
404
+ "eval_accuracy": 0.4696969696969697,
405
+ "eval_loss": 0.7317812442779541,
406
+ "eval_runtime": 1.4986,
407
+ "eval_samples_per_second": 88.082,
408
+ "eval_steps_per_second": 2.669,
409
+ "step": 25
410
+ },
411
+ {
412
+ "epoch": 3.7142857142857144,
413
+ "grad_norm": 4.539316177368164,
414
+ "learning_rate": 3.235294117647059e-05,
415
+ "loss": 0.6719,
416
+ "step": 26
417
+ },
418
+ {
419
+ "epoch": 3.7142857142857144,
420
+ "eval_accuracy": 0.44696969696969696,
421
+ "eval_loss": 0.7320696711540222,
422
+ "eval_runtime": 1.5498,
423
+ "eval_samples_per_second": 85.173,
424
+ "eval_steps_per_second": 2.581,
425
+ "step": 26
426
+ },
427
+ {
428
+ "epoch": 3.857142857142857,
429
+ "grad_norm": 5.660553932189941,
430
+ "learning_rate": 3.161764705882353e-05,
431
+ "loss": 0.6752,
432
+ "step": 27
433
+ },
434
+ {
435
+ "epoch": 3.857142857142857,
436
+ "eval_accuracy": 0.4318181818181818,
437
+ "eval_loss": 0.7303592562675476,
438
+ "eval_runtime": 1.4988,
439
+ "eval_samples_per_second": 88.068,
440
+ "eval_steps_per_second": 2.669,
441
+ "step": 27
442
+ },
443
+ {
444
+ "epoch": 4.0,
445
+ "grad_norm": 5.854210376739502,
446
+ "learning_rate": 3.0882352941176475e-05,
447
+ "loss": 0.7359,
448
+ "step": 28
449
+ },
450
+ {
451
+ "epoch": 4.0,
452
+ "eval_accuracy": 0.4621212121212121,
453
+ "eval_loss": 0.7259455323219299,
454
+ "eval_runtime": 1.5005,
455
+ "eval_samples_per_second": 87.973,
456
+ "eval_steps_per_second": 2.666,
457
+ "step": 28
458
+ },
459
+ {
460
+ "epoch": 4.142857142857143,
461
+ "grad_norm": 5.565073490142822,
462
+ "learning_rate": 3.0147058823529413e-05,
463
+ "loss": 0.7201,
464
+ "step": 29
465
+ },
466
+ {
467
+ "epoch": 4.142857142857143,
468
+ "eval_accuracy": 0.4696969696969697,
469
+ "eval_loss": 0.7197902798652649,
470
+ "eval_runtime": 1.4968,
471
+ "eval_samples_per_second": 88.189,
472
+ "eval_steps_per_second": 2.672,
473
+ "step": 29
474
+ },
475
+ {
476
+ "epoch": 4.285714285714286,
477
+ "grad_norm": 7.555918216705322,
478
+ "learning_rate": 2.9411764705882354e-05,
479
+ "loss": 0.7135,
480
+ "step": 30
481
+ },
482
+ {
483
+ "epoch": 4.285714285714286,
484
+ "eval_accuracy": 0.5227272727272727,
485
+ "eval_loss": 0.7117217183113098,
486
+ "eval_runtime": 1.5427,
487
+ "eval_samples_per_second": 85.563,
488
+ "eval_steps_per_second": 2.593,
489
+ "step": 30
490
+ },
491
+ {
492
+ "epoch": 4.428571428571429,
493
+ "grad_norm": 3.8518428802490234,
494
+ "learning_rate": 2.8676470588235295e-05,
495
+ "loss": 0.6927,
496
+ "step": 31
497
+ },
498
+ {
499
+ "epoch": 4.428571428571429,
500
+ "eval_accuracy": 0.5303030303030303,
501
+ "eval_loss": 0.7075935006141663,
502
+ "eval_runtime": 1.4971,
503
+ "eval_samples_per_second": 88.171,
504
+ "eval_steps_per_second": 2.672,
505
+ "step": 31
506
+ },
507
+ {
508
+ "epoch": 4.571428571428571,
509
+ "grad_norm": 2.8224422931671143,
510
+ "learning_rate": 2.7941176470588236e-05,
511
+ "loss": 0.7018,
512
+ "step": 32
513
+ },
514
+ {
515
+ "epoch": 4.571428571428571,
516
+ "eval_accuracy": 0.5,
517
+ "eval_loss": 0.700927734375,
518
+ "eval_runtime": 1.5484,
519
+ "eval_samples_per_second": 85.247,
520
+ "eval_steps_per_second": 2.583,
521
+ "step": 32
522
+ },
523
+ {
524
+ "epoch": 4.714285714285714,
525
+ "grad_norm": 2.890439033508301,
526
+ "learning_rate": 2.7205882352941174e-05,
527
+ "loss": 0.7398,
528
+ "step": 33
529
+ },
530
+ {
531
+ "epoch": 4.714285714285714,
532
+ "eval_accuracy": 0.5454545454545454,
533
+ "eval_loss": 0.695911705493927,
534
+ "eval_runtime": 1.5466,
535
+ "eval_samples_per_second": 85.349,
536
+ "eval_steps_per_second": 2.586,
537
+ "step": 33
538
+ },
539
+ {
540
+ "epoch": 4.857142857142857,
541
+ "grad_norm": 2.9305408000946045,
542
+ "learning_rate": 2.647058823529412e-05,
543
+ "loss": 0.7487,
544
+ "step": 34
545
+ },
546
+ {
547
+ "epoch": 4.857142857142857,
548
+ "eval_accuracy": 0.5378787878787878,
549
+ "eval_loss": 0.6937810778617859,
550
+ "eval_runtime": 1.5486,
551
+ "eval_samples_per_second": 85.237,
552
+ "eval_steps_per_second": 2.583,
553
+ "step": 34
554
+ },
555
+ {
556
+ "epoch": 5.0,
557
+ "grad_norm": 3.190406084060669,
558
+ "learning_rate": 2.5735294117647057e-05,
559
+ "loss": 0.7183,
560
+ "step": 35
561
+ },
562
+ {
563
+ "epoch": 5.0,
564
+ "eval_accuracy": 0.5378787878787878,
565
+ "eval_loss": 0.6898541450500488,
566
+ "eval_runtime": 1.5451,
567
+ "eval_samples_per_second": 85.433,
568
+ "eval_steps_per_second": 2.589,
569
+ "step": 35
570
+ },
571
+ {
572
+ "epoch": 5.142857142857143,
573
+ "grad_norm": 4.026767730712891,
574
+ "learning_rate": 2.5e-05,
575
+ "loss": 0.7524,
576
+ "step": 36
577
+ },
578
+ {
579
+ "epoch": 5.142857142857143,
580
+ "eval_accuracy": 0.5454545454545454,
581
+ "eval_loss": 0.6862215995788574,
582
+ "eval_runtime": 1.5452,
583
+ "eval_samples_per_second": 85.425,
584
+ "eval_steps_per_second": 2.589,
585
+ "step": 36
586
+ },
587
+ {
588
+ "epoch": 5.285714285714286,
589
+ "grad_norm": 7.148804187774658,
590
+ "learning_rate": 2.4264705882352942e-05,
591
+ "loss": 0.731,
592
+ "step": 37
593
+ },
594
+ {
595
+ "epoch": 5.285714285714286,
596
+ "eval_accuracy": 0.5606060606060606,
597
+ "eval_loss": 0.6843928098678589,
598
+ "eval_runtime": 1.5499,
599
+ "eval_samples_per_second": 85.166,
600
+ "eval_steps_per_second": 2.581,
601
+ "step": 37
602
+ },
603
+ {
604
+ "epoch": 5.428571428571429,
605
+ "grad_norm": 6.0132737159729,
606
+ "learning_rate": 2.3529411764705884e-05,
607
+ "loss": 0.7534,
608
+ "step": 38
609
+ },
610
+ {
611
+ "epoch": 5.428571428571429,
612
+ "eval_accuracy": 0.553030303030303,
613
+ "eval_loss": 0.6832978129386902,
614
+ "eval_runtime": 1.5495,
615
+ "eval_samples_per_second": 85.19,
616
+ "eval_steps_per_second": 2.582,
617
+ "step": 38
618
+ },
619
+ {
620
+ "epoch": 5.571428571428571,
621
+ "grad_norm": 2.2362067699432373,
622
+ "learning_rate": 2.2794117647058825e-05,
623
+ "loss": 0.7339,
624
+ "step": 39
625
+ },
626
+ {
627
+ "epoch": 5.571428571428571,
628
+ "eval_accuracy": 0.5454545454545454,
629
+ "eval_loss": 0.6838245987892151,
630
+ "eval_runtime": 1.5476,
631
+ "eval_samples_per_second": 85.292,
632
+ "eval_steps_per_second": 2.585,
633
+ "step": 39
634
+ },
635
+ {
636
+ "epoch": 5.714285714285714,
637
+ "grad_norm": 3.735261917114258,
638
+ "learning_rate": 2.2058823529411766e-05,
639
+ "loss": 0.6537,
640
+ "step": 40
641
+ },
642
+ {
643
+ "epoch": 5.714285714285714,
644
+ "eval_accuracy": 0.553030303030303,
645
+ "eval_loss": 0.6850881576538086,
646
+ "eval_runtime": 1.5467,
647
+ "eval_samples_per_second": 85.344,
648
+ "eval_steps_per_second": 2.586,
649
+ "step": 40
650
+ },
651
+ {
652
+ "epoch": 5.857142857142857,
653
+ "grad_norm": 5.130250453948975,
654
+ "learning_rate": 2.1323529411764707e-05,
655
+ "loss": 0.7286,
656
+ "step": 41
657
+ },
658
+ {
659
+ "epoch": 5.857142857142857,
660
+ "eval_accuracy": 0.5454545454545454,
661
+ "eval_loss": 0.6860766410827637,
662
+ "eval_runtime": 1.5496,
663
+ "eval_samples_per_second": 85.186,
664
+ "eval_steps_per_second": 2.581,
665
+ "step": 41
666
+ },
667
+ {
668
+ "epoch": 6.0,
669
+ "grad_norm": 2.0442426204681396,
670
+ "learning_rate": 2.058823529411765e-05,
671
+ "loss": 0.7069,
672
+ "step": 42
673
+ },
674
+ {
675
+ "epoch": 6.0,
676
+ "eval_accuracy": 0.5378787878787878,
677
+ "eval_loss": 0.6856178641319275,
678
+ "eval_runtime": 1.55,
679
+ "eval_samples_per_second": 85.163,
680
+ "eval_steps_per_second": 2.581,
681
+ "step": 42
682
+ },
683
+ {
684
+ "epoch": 6.142857142857143,
685
+ "grad_norm": 2.5700104236602783,
686
+ "learning_rate": 1.9852941176470586e-05,
687
+ "loss": 0.724,
688
+ "step": 43
689
+ },
690
+ {
691
+ "epoch": 6.142857142857143,
692
+ "eval_accuracy": 0.5378787878787878,
693
+ "eval_loss": 0.684641420841217,
694
+ "eval_runtime": 1.548,
695
+ "eval_samples_per_second": 85.27,
696
+ "eval_steps_per_second": 2.584,
697
+ "step": 43
698
+ },
699
+ {
700
+ "epoch": 6.285714285714286,
701
+ "grad_norm": 7.043388366699219,
702
+ "learning_rate": 1.9117647058823528e-05,
703
+ "loss": 0.7109,
704
+ "step": 44
705
+ },
706
+ {
707
+ "epoch": 6.285714285714286,
708
+ "eval_accuracy": 0.5378787878787878,
709
+ "eval_loss": 0.6849846243858337,
710
+ "eval_runtime": 1.5478,
711
+ "eval_samples_per_second": 85.281,
712
+ "eval_steps_per_second": 2.584,
713
+ "step": 44
714
+ },
715
+ {
716
+ "epoch": 6.428571428571429,
717
+ "grad_norm": 3.666529655456543,
718
+ "learning_rate": 1.8382352941176472e-05,
719
+ "loss": 0.6973,
720
+ "step": 45
721
+ },
722
+ {
723
+ "epoch": 6.428571428571429,
724
+ "eval_accuracy": 0.5303030303030303,
725
+ "eval_loss": 0.6853426694869995,
726
+ "eval_runtime": 1.5469,
727
+ "eval_samples_per_second": 85.333,
728
+ "eval_steps_per_second": 2.586,
729
+ "step": 45
730
+ },
731
+ {
732
+ "epoch": 6.571428571428571,
733
+ "grad_norm": 3.5915279388427734,
734
+ "learning_rate": 1.7647058823529414e-05,
735
+ "loss": 0.701,
736
+ "step": 46
737
+ },
738
+ {
739
+ "epoch": 6.571428571428571,
740
+ "eval_accuracy": 0.5227272727272727,
741
+ "eval_loss": 0.6859287023544312,
742
+ "eval_runtime": 1.5453,
743
+ "eval_samples_per_second": 85.419,
744
+ "eval_steps_per_second": 2.588,
745
+ "step": 46
746
+ },
747
+ {
748
+ "epoch": 6.714285714285714,
749
+ "grad_norm": 6.7808003425598145,
750
+ "learning_rate": 1.6911764705882355e-05,
751
+ "loss": 0.7755,
752
+ "step": 47
753
+ },
754
+ {
755
+ "epoch": 6.714285714285714,
756
+ "eval_accuracy": 0.5378787878787878,
757
+ "eval_loss": 0.6857155561447144,
758
+ "eval_runtime": 1.5467,
759
+ "eval_samples_per_second": 85.341,
760
+ "eval_steps_per_second": 2.586,
761
+ "step": 47
762
+ },
763
+ {
764
+ "epoch": 6.857142857142857,
765
+ "grad_norm": 5.13129997253418,
766
+ "learning_rate": 1.6176470588235296e-05,
767
+ "loss": 0.7192,
768
+ "step": 48
769
+ },
770
+ {
771
+ "epoch": 6.857142857142857,
772
+ "eval_accuracy": 0.5303030303030303,
773
+ "eval_loss": 0.6857806444168091,
774
+ "eval_runtime": 1.5503,
775
+ "eval_samples_per_second": 85.146,
776
+ "eval_steps_per_second": 2.58,
777
+ "step": 48
778
+ },
779
+ {
780
+ "epoch": 7.0,
781
+ "grad_norm": 2.5239486694335938,
782
+ "learning_rate": 1.5441176470588237e-05,
783
+ "loss": 0.7459,
784
+ "step": 49
785
+ },
786
+ {
787
+ "epoch": 7.0,
788
+ "eval_accuracy": 0.5303030303030303,
789
+ "eval_loss": 0.68532794713974,
790
+ "eval_runtime": 1.5455,
791
+ "eval_samples_per_second": 85.407,
792
+ "eval_steps_per_second": 2.588,
793
+ "step": 49
794
+ },
795
+ {
796
+ "epoch": 7.142857142857143,
797
+ "grad_norm": 5.412455081939697,
798
+ "learning_rate": 1.4705882352941177e-05,
799
+ "loss": 0.7348,
800
+ "step": 50
801
+ },
802
+ {
803
+ "epoch": 7.142857142857143,
804
+ "eval_accuracy": 0.5227272727272727,
805
+ "eval_loss": 0.6866211295127869,
806
+ "eval_runtime": 1.5453,
807
+ "eval_samples_per_second": 85.421,
808
+ "eval_steps_per_second": 2.589,
809
+ "step": 50
810
+ },
811
+ {
812
+ "epoch": 7.285714285714286,
813
+ "grad_norm": 2.2723119258880615,
814
+ "learning_rate": 1.3970588235294118e-05,
815
+ "loss": 0.7152,
816
+ "step": 51
817
+ },
818
+ {
819
+ "epoch": 7.285714285714286,
820
+ "eval_accuracy": 0.5681818181818182,
821
+ "eval_loss": 0.687363862991333,
822
+ "eval_runtime": 1.5415,
823
+ "eval_samples_per_second": 85.631,
824
+ "eval_steps_per_second": 2.595,
825
+ "step": 51
826
+ },
827
+ {
828
+ "epoch": 7.428571428571429,
829
+ "grad_norm": 2.08304762840271,
830
+ "learning_rate": 1.323529411764706e-05,
831
+ "loss": 0.6919,
832
+ "step": 52
833
+ },
834
+ {
835
+ "epoch": 7.428571428571429,
836
+ "eval_accuracy": 0.5681818181818182,
837
+ "eval_loss": 0.6890033483505249,
838
+ "eval_runtime": 1.5478,
839
+ "eval_samples_per_second": 85.284,
840
+ "eval_steps_per_second": 2.584,
841
+ "step": 52
842
+ },
843
+ {
844
+ "epoch": 7.571428571428571,
845
+ "grad_norm": 8.980510711669922,
846
+ "learning_rate": 1.25e-05,
847
+ "loss": 0.7328,
848
+ "step": 53
849
+ },
850
+ {
851
+ "epoch": 7.571428571428571,
852
+ "eval_accuracy": 0.5681818181818182,
853
+ "eval_loss": 0.6898555755615234,
854
+ "eval_runtime": 1.5482,
855
+ "eval_samples_per_second": 85.263,
856
+ "eval_steps_per_second": 2.584,
857
+ "step": 53
858
+ },
859
+ {
860
+ "epoch": 7.714285714285714,
861
+ "grad_norm": 3.777273416519165,
862
+ "learning_rate": 1.1764705882352942e-05,
863
+ "loss": 0.6631,
864
+ "step": 54
865
+ },
866
+ {
867
+ "epoch": 7.714285714285714,
868
+ "eval_accuracy": 0.5681818181818182,
869
+ "eval_loss": 0.6898496150970459,
870
+ "eval_runtime": 1.5483,
871
+ "eval_samples_per_second": 85.252,
872
+ "eval_steps_per_second": 2.583,
873
+ "step": 54
874
+ },
875
+ {
876
+ "epoch": 7.857142857142857,
877
+ "grad_norm": 5.7015204429626465,
878
+ "learning_rate": 1.1029411764705883e-05,
879
+ "loss": 0.7114,
880
+ "step": 55
881
+ },
882
+ {
883
+ "epoch": 7.857142857142857,
884
+ "eval_accuracy": 0.5606060606060606,
885
+ "eval_loss": 0.6892370581626892,
886
+ "eval_runtime": 1.5489,
887
+ "eval_samples_per_second": 85.22,
888
+ "eval_steps_per_second": 2.582,
889
+ "step": 55
890
+ },
891
+ {
892
+ "epoch": 8.0,
893
+ "grad_norm": 2.6641385555267334,
894
+ "learning_rate": 1.0294117647058824e-05,
895
+ "loss": 0.7448,
896
+ "step": 56
897
+ },
898
+ {
899
+ "epoch": 8.0,
900
+ "eval_accuracy": 0.5606060606060606,
901
+ "eval_loss": 0.6905569434165955,
902
+ "eval_runtime": 1.5448,
903
+ "eval_samples_per_second": 85.448,
904
+ "eval_steps_per_second": 2.589,
905
+ "step": 56
906
+ },
907
+ {
908
+ "epoch": 8.142857142857142,
909
+ "grad_norm": 2.0213890075683594,
910
+ "learning_rate": 9.558823529411764e-06,
911
+ "loss": 0.7065,
912
+ "step": 57
913
+ },
914
+ {
915
+ "epoch": 8.142857142857142,
916
+ "eval_accuracy": 0.553030303030303,
917
+ "eval_loss": 0.6913914680480957,
918
+ "eval_runtime": 1.5496,
919
+ "eval_samples_per_second": 85.183,
920
+ "eval_steps_per_second": 2.581,
921
+ "step": 57
922
+ },
923
+ {
924
+ "epoch": 8.285714285714286,
925
+ "grad_norm": 2.5657827854156494,
926
+ "learning_rate": 8.823529411764707e-06,
927
+ "loss": 0.697,
928
+ "step": 58
929
+ },
930
+ {
931
+ "epoch": 8.285714285714286,
932
+ "eval_accuracy": 0.5606060606060606,
933
+ "eval_loss": 0.691057026386261,
934
+ "eval_runtime": 1.545,
935
+ "eval_samples_per_second": 85.438,
936
+ "eval_steps_per_second": 2.589,
937
+ "step": 58
938
+ },
939
+ {
940
+ "epoch": 8.428571428571429,
941
+ "grad_norm": 2.7576677799224854,
942
+ "learning_rate": 8.088235294117648e-06,
943
+ "loss": 0.7197,
944
+ "step": 59
945
+ },
946
+ {
947
+ "epoch": 8.428571428571429,
948
+ "eval_accuracy": 0.5378787878787878,
949
+ "eval_loss": 0.6916370987892151,
950
+ "eval_runtime": 1.5467,
951
+ "eval_samples_per_second": 85.343,
952
+ "eval_steps_per_second": 2.586,
953
+ "step": 59
954
+ },
955
+ {
956
+ "epoch": 8.571428571428571,
957
+ "grad_norm": 4.963264465332031,
958
+ "learning_rate": 7.3529411764705884e-06,
959
+ "loss": 0.7097,
960
+ "step": 60
961
+ },
962
+ {
963
+ "epoch": 8.571428571428571,
964
+ "eval_accuracy": 0.5606060606060606,
965
+ "eval_loss": 0.6910924911499023,
966
+ "eval_runtime": 1.5475,
967
+ "eval_samples_per_second": 85.297,
968
+ "eval_steps_per_second": 2.585,
969
+ "step": 60
970
+ },
971
+ {
972
+ "epoch": 8.714285714285714,
973
+ "grad_norm": 10.05405044555664,
974
+ "learning_rate": 6.61764705882353e-06,
975
+ "loss": 0.687,
976
+ "step": 61
977
+ },
978
+ {
979
+ "epoch": 8.714285714285714,
980
+ "eval_accuracy": 0.553030303030303,
981
+ "eval_loss": 0.690488874912262,
982
+ "eval_runtime": 1.5501,
983
+ "eval_samples_per_second": 85.156,
984
+ "eval_steps_per_second": 2.58,
985
+ "step": 61
986
+ },
987
+ {
988
+ "epoch": 8.857142857142858,
989
+ "grad_norm": 5.774103164672852,
990
+ "learning_rate": 5.882352941176471e-06,
991
+ "loss": 0.7323,
992
+ "step": 62
993
+ },
994
+ {
995
+ "epoch": 8.857142857142858,
996
+ "eval_accuracy": 0.5303030303030303,
997
+ "eval_loss": 0.6909504532814026,
998
+ "eval_runtime": 1.5471,
999
+ "eval_samples_per_second": 85.323,
1000
+ "eval_steps_per_second": 2.586,
1001
+ "step": 62
1002
+ },
1003
+ {
1004
+ "epoch": 9.0,
1005
+ "grad_norm": 7.126034736633301,
1006
+ "learning_rate": 5.147058823529412e-06,
1007
+ "loss": 0.721,
1008
+ "step": 63
1009
+ },
1010
+ {
1011
+ "epoch": 9.0,
1012
+ "eval_accuracy": 0.5378787878787878,
1013
+ "eval_loss": 0.6910215616226196,
1014
+ "eval_runtime": 1.5426,
1015
+ "eval_samples_per_second": 85.569,
1016
+ "eval_steps_per_second": 2.593,
1017
+ "step": 63
1018
+ },
1019
+ {
1020
+ "epoch": 9.142857142857142,
1021
+ "grad_norm": 4.496044635772705,
1022
+ "learning_rate": 4.411764705882353e-06,
1023
+ "loss": 0.7411,
1024
+ "step": 64
1025
+ },
1026
+ {
1027
+ "epoch": 9.142857142857142,
1028
+ "eval_accuracy": 0.5454545454545454,
1029
+ "eval_loss": 0.6925870180130005,
1030
+ "eval_runtime": 1.5463,
1031
+ "eval_samples_per_second": 85.367,
1032
+ "eval_steps_per_second": 2.587,
1033
+ "step": 64
1034
+ },
1035
+ {
1036
+ "epoch": 9.285714285714286,
1037
+ "grad_norm": 5.705209732055664,
1038
+ "learning_rate": 3.6764705882352942e-06,
1039
+ "loss": 0.7041,
1040
+ "step": 65
1041
+ },
1042
+ {
1043
+ "epoch": 9.285714285714286,
1044
+ "eval_accuracy": 0.553030303030303,
1045
+ "eval_loss": 0.6924833655357361,
1046
+ "eval_runtime": 1.5448,
1047
+ "eval_samples_per_second": 85.45,
1048
+ "eval_steps_per_second": 2.589,
1049
+ "step": 65
1050
+ },
1051
+ {
1052
+ "epoch": 9.428571428571429,
1053
+ "grad_norm": 3.551724910736084,
1054
+ "learning_rate": 2.9411764705882355e-06,
1055
+ "loss": 0.7559,
1056
+ "step": 66
1057
+ },
1058
+ {
1059
+ "epoch": 9.428571428571429,
1060
+ "eval_accuracy": 0.5454545454545454,
1061
+ "eval_loss": 0.6926906108856201,
1062
+ "eval_runtime": 1.5456,
1063
+ "eval_samples_per_second": 85.403,
1064
+ "eval_steps_per_second": 2.588,
1065
+ "step": 66
1066
+ },
1067
+ {
1068
+ "epoch": 9.571428571428571,
1069
+ "grad_norm": 1.5494858026504517,
1070
+ "learning_rate": 2.2058823529411767e-06,
1071
+ "loss": 0.6951,
1072
+ "step": 67
1073
+ },
1074
+ {
1075
+ "epoch": 9.571428571428571,
1076
+ "eval_accuracy": 0.5378787878787878,
1077
+ "eval_loss": 0.6926224231719971,
1078
+ "eval_runtime": 1.5442,
1079
+ "eval_samples_per_second": 85.483,
1080
+ "eval_steps_per_second": 2.59,
1081
+ "step": 67
1082
+ },
1083
+ {
1084
+ "epoch": 9.714285714285714,
1085
+ "grad_norm": 6.727674961090088,
1086
+ "learning_rate": 1.4705882352941177e-06,
1087
+ "loss": 0.7175,
1088
+ "step": 68
1089
+ },
1090
+ {
1091
+ "epoch": 9.714285714285714,
1092
+ "eval_accuracy": 0.5303030303030303,
1093
+ "eval_loss": 0.692868173122406,
1094
+ "eval_runtime": 1.5499,
1095
+ "eval_samples_per_second": 85.165,
1096
+ "eval_steps_per_second": 2.581,
1097
+ "step": 68
1098
+ },
1099
+ {
1100
+ "epoch": 9.857142857142858,
1101
+ "grad_norm": 2.2420670986175537,
1102
+ "learning_rate": 7.352941176470589e-07,
1103
+ "loss": 0.6852,
1104
+ "step": 69
1105
+ },
1106
+ {
1107
+ "epoch": 9.857142857142858,
1108
+ "eval_accuracy": 0.5454545454545454,
1109
+ "eval_loss": 0.6923591494560242,
1110
+ "eval_runtime": 1.5004,
1111
+ "eval_samples_per_second": 87.976,
1112
+ "eval_steps_per_second": 2.666,
1113
+ "step": 69
1114
+ },
1115
+ {
1116
+ "epoch": 10.0,
1117
+ "grad_norm": 4.505035400390625,
1118
+ "learning_rate": 0.0,
1119
+ "loss": 0.6894,
1120
+ "step": 70
1121
+ },
1122
+ {
1123
+ "epoch": 10.0,
1124
+ "eval_accuracy": 0.553030303030303,
1125
+ "eval_loss": 0.6922733187675476,
1126
+ "eval_runtime": 1.4985,
1127
+ "eval_samples_per_second": 88.086,
1128
+ "eval_steps_per_second": 2.669,
1129
+ "step": 70
1130
+ },
1131
+ {
1132
+ "epoch": 10.0,
1133
+ "step": 70,
1134
+ "total_flos": 62972060631040.0,
1135
+ "train_loss": 0.7597047252314432,
1136
+ "train_runtime": 351.9683,
1137
+ "train_samples_per_second": 14.945,
1138
+ "train_steps_per_second": 0.199
1139
+ }
1140
+ ],
1141
+ "logging_steps": 1,
1142
+ "max_steps": 70,
1143
+ "num_input_tokens_seen": 0,
1144
+ "num_train_epochs": 10,
1145
+ "save_steps": 500,
1146
+ "total_flos": 62972060631040.0,
1147
+ "train_batch_size": 10,
1148
+ "trial_name": null,
1149
+ "trial_params": null
1150
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:37266b6d08508ed507c9a38582ba531a0bd0e5101eaa5e5b80d12ff76bff84ba
3
+ size 5048
vocab.json ADDED
The diff for this file is too large to render. See raw diff