--- license: apache-2.0 base_model: google/long-t5-tglobal-base tags: - summarization - generated_from_trainer datasets: - gov_report_summarization_dataset metrics: - rouge model-index: - name: long-t5-tglobal-base-finetuned-govReport-4096 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: gov_report_summarization_dataset type: gov_report_summarization_dataset config: document split: validation args: document metrics: - name: Rouge1 type: rouge value: 0.0463 --- # long-t5-tglobal-base-finetuned-govReport-4096 This model is a fine-tuned version of [google/long-t5-tglobal-base](https://huggingface.co/google/long-t5-tglobal-base) on the gov_report_summarization_dataset dataset. It achieves the following results on the evaluation set: - Loss: 1.3116 - Rouge1: 0.0463 - Rouge2: 0.0231 - Rougel: 0.039 - Rougelsum: 0.0436 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:| | 14.9489 | 1.0 | 25 | 2.8019 | 0.0416 | 0.0156 | 0.0343 | 0.0383 | | 3.9751 | 2.0 | 50 | 2.0899 | 0.0396 | 0.0145 | 0.0332 | 0.0367 | | 3.0361 | 3.0 | 75 | 1.4337 | 0.0395 | 0.0138 | 0.033 | 0.0366 | | 1.8477 | 4.0 | 100 | 1.3654 | 0.0406 | 0.0157 | 0.0342 | 0.0378 | | 1.6709 | 5.0 | 125 | 1.3355 | 0.0419 | 0.0171 | 0.036 | 0.0394 | | 1.5673 | 6.0 | 150 | 1.3229 | 0.0446 | 0.022 | 0.0383 | 0.0423 | | 1.5567 | 7.0 | 175 | 1.3181 | 0.047 | 0.0233 | 0.0393 | 0.0441 | | 1.5066 | 8.0 | 200 | 1.3135 | 0.0467 | 0.0233 | 0.0394 | 0.0441 | | 1.515 | 9.0 | 225 | 1.3117 | 0.0462 | 0.0231 | 0.0389 | 0.0436 | | 1.4868 | 10.0 | 250 | 1.3116 | 0.0463 | 0.0231 | 0.039 | 0.0436 | ### Framework versions - Transformers 4.37.0 - Pytorch 2.1.2 - Datasets 2.1.0 - Tokenizers 0.15.1