--- license: apache-2.0 base_model: google/long-t5-tglobal-base tags: - summarization - generated_from_trainer datasets: - gov_report_summarization_dataset metrics: - rouge model-index: - name: long-t5-tglobal-base-finetuned-govReport-4096 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: gov_report_summarization_dataset type: gov_report_summarization_dataset config: document split: validation args: document metrics: - name: Rouge1 type: rouge value: 0.0432 --- # long-t5-tglobal-base-finetuned-govReport-4096 This model is a fine-tuned version of [google/long-t5-tglobal-base](https://huggingface.co/google/long-t5-tglobal-base) on the gov_report_summarization_dataset dataset. It achieves the following results on the evaluation set: - Loss: 1.4052 - Rouge1: 0.0432 - Rouge2: 0.0217 - Rougel: 0.0378 - Rougelsum: 0.0408 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:| | 15.9484 | 0.99 | 31 | 2.7412 | 0.0382 | 0.0142 | 0.0319 | 0.0354 | | 3.0143 | 1.98 | 62 | 1.7096 | 0.0385 | 0.0144 | 0.032 | 0.0355 | | 2.1893 | 2.98 | 93 | 1.4976 | 0.0376 | 0.0138 | 0.0313 | 0.0347 | | 1.6128 | 4.0 | 125 | 1.4406 | 0.041 | 0.0174 | 0.0354 | 0.0387 | | 1.5438 | 4.99 | 156 | 1.4292 | 0.043 | 0.0203 | 0.0368 | 0.0408 | | 1.5015 | 5.98 | 187 | 1.4220 | 0.0427 | 0.0205 | 0.0367 | 0.0405 | | 1.4723 | 6.98 | 218 | 1.4071 | 0.0431 | 0.0215 | 0.0376 | 0.0408 | | 1.4707 | 8.0 | 250 | 1.4089 | 0.0427 | 0.0212 | 0.0373 | 0.0405 | | 1.4447 | 8.99 | 281 | 1.4046 | 0.0431 | 0.0216 | 0.0379 | 0.0408 | | 1.4884 | 9.92 | 310 | 1.4052 | 0.0432 | 0.0217 | 0.0378 | 0.0408 | ### Framework versions - Transformers 4.37.0 - Pytorch 2.1.2 - Datasets 2.1.0 - Tokenizers 0.15.1