KaleiNeely commited on
Commit
ed0df8b
·
verified ·
1 Parent(s): 1115f2c

Delete tokenization_rwkv5.py

Browse files
Files changed (1) hide show
  1. tokenization_rwkv5.py +0 -229
tokenization_rwkv5.py DELETED
@@ -1,229 +0,0 @@
1
- # coding=utf-8
2
- # Copyright 2024 The HuggingFace Inc. team.
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
- """Tokenization classes for RWKV5."""
16
-
17
- import os
18
- import re
19
- from typing import TYPE_CHECKING, List, Optional, Tuple
20
-
21
- from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
22
- from transformers.utils import logging
23
-
24
-
25
- if TYPE_CHECKING:
26
- pass
27
-
28
- logger = logging.get_logger(__name__)
29
-
30
- VOCAB_FILES_NAMES = {
31
- "vocab_file": "vocab.txt",
32
- }
33
- PRETRAINED_VOCAB_FILES_MAP = {
34
- "vocab_file": {
35
- "ArthurZ/rwkv-5-utf": "https://huggingface.co/ArthurZ/rwkv-5-utf/blob/main/vocab.txt",
36
- },
37
- }
38
-
39
-
40
- def whitespace_tokenize(text):
41
- """Runs basic whitespace cleaning and splitting on a piece of text.
42
- The separators are kept
43
- """
44
- text = text.strip()
45
- if not text:
46
- return []
47
- tokens = re.split(b"(?= )", text)
48
- return tokens
49
-
50
-
51
- class WordpieceTokenizer(object):
52
- """Runs WordPiece tokenization."""
53
-
54
- def __init__(self, vocab, unk_token):
55
- self.vocab = vocab
56
- self.unk_token = unk_token
57
-
58
- def tokenize(self, text):
59
- """
60
- Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform
61
- tokenization using the given vocabulary.
62
-
63
- For example, `input = "unaffable"` wil return as output `["un", "##aff", "##able"]`.
64
-
65
- Args:
66
- text: A single token or whitespace separated tokens. This should have
67
- already been passed through *BasicTokenizer*.
68
-
69
- Returns:
70
- A list of wordpiece tokens.
71
- """
72
-
73
- output_tokens = []
74
- for token in whitespace_tokenize(text):
75
- chars = list(token)
76
- is_bad = False
77
- start = 0
78
- sub_tokens = []
79
- while start < len(chars):
80
- end = len(chars)
81
- cur_substr = None
82
- while start < end:
83
- substr = bytes(chars[start:end])
84
- if substr in self.vocab:
85
- cur_substr = substr
86
- break
87
- end -= 1
88
- if cur_substr is None:
89
- is_bad = True
90
- break
91
- try:
92
- cur_substr = cur_substr.decode()
93
- except UnicodeDecodeError:
94
- cur_substr = str(cur_substr)
95
- sub_tokens.append(cur_substr)
96
- start = end
97
- if is_bad:
98
- output_tokens.append(self.unk_token)
99
- else:
100
- output_tokens.extend(sub_tokens)
101
- return output_tokens
102
-
103
-
104
- class Rwkv5Tokenizer(PreTrainedTokenizer):
105
- vocab_files_names = VOCAB_FILES_NAMES
106
- pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
107
- max_model_input_sizes = {"ArthurZ/rwkv-5-utf": 2048}
108
-
109
- model_input_names = ["input_ids", "attention_mask"]
110
-
111
- def __init__(self, vocab_file, bos_token="<s>", eos_token="<s>", unk_token="<s>", **kwargs):
112
- if not os.path.isfile(vocab_file):
113
- raise ValueError(
114
- f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained"
115
- " model use `tokenizer = BertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`"
116
- )
117
-
118
- with open(vocab_file, "r") as reader:
119
- tokens = reader.readlines()
120
- vocab = {}
121
- for index, token in enumerate(tokens):
122
- token = eval(token.rstrip("\n"))
123
- vocab[token] = index
124
-
125
- self.add_bos_token = True
126
- self.encoder = vocab
127
- self.decoder = {v: k for k, v in vocab.items()}
128
- self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.encoder, unk_token=str(unk_token))
129
- self._added_tokens_decoder = {0: AddedToken(str(bos_token))}
130
- super().__init__(bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, **kwargs)
131
-
132
- @property
133
- def vocab_size(self):
134
- return len(self.encoder)
135
-
136
- def get_vocab(self):
137
- vocab = {str(self.convert_ids_to_tokens(i)): i for i in range(self.vocab_size)}
138
- vocab.update(self.added_tokens_encoder)
139
- return vocab
140
-
141
- def _tokenize(self, text, split_special_tokens=False):
142
- return self.wordpiece_tokenizer.tokenize(text.encode("utf-8"))
143
-
144
- def _convert_token_to_id(self, token):
145
- """Converts a token (byte) to an id using the vocab."""
146
- if token.startswith("b'\\"):
147
- token = eval(token)
148
- elif not isinstance(token, bytes):
149
- token = token.encode("utf-8", errors="replace")
150
- return self.encoder.get(token, self.unk_token_id)
151
-
152
- def _convert_id_to_token(self, index):
153
- """Converts an index (integer) in a token (byte) using the vocab."""
154
- token = self.decoder.get(index, self.unk_token)
155
- if isinstance(token, (bytes)):
156
- token = token.decode("utf-8", errors="replace")
157
- return token
158
-
159
- def convert_tokens_to_string(self, tokens):
160
- """Converts a sequence of tokens (bytes) in a single string. Additional tokens are encoded to bytes"""
161
- out_string = b"".join([k.encode(errors="replace") if isinstance(k, str) else k for k in tokens]).decode(
162
- "utf-8"
163
- )
164
- return out_string
165
-
166
- def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
167
- index = 0
168
- if os.path.isdir(save_directory):
169
- vocab_file = os.path.join(
170
- save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
171
- )
172
- else:
173
- vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory
174
- with open(vocab_file, "w") as writer:
175
- for token, token_index in sorted(self.encoder.items(), key=lambda kv: kv[1]):
176
- if index != token_index:
177
- logger.warning(
178
- f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive."
179
- " Please check that the vocabulary is not corrupted!"
180
- )
181
- index = token_index
182
- writer.write(str(token) + "\n")
183
- index += 1
184
- return (vocab_file,)
185
-
186
- def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
187
- if self.add_bos_token:
188
- bos_token_ids = [self.bos_token_id]
189
- else:
190
- bos_token_ids = []
191
-
192
- output = bos_token_ids + token_ids_0
193
-
194
- if token_ids_1 is None:
195
- return output
196
-
197
- return output + bos_token_ids + token_ids_1
198
-
199
- def get_special_tokens_mask(
200
- self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
201
- ) -> List[int]:
202
- """
203
- Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding
204
- special tokens using the tokenizer `prepare_for_model` or `encode_plus` methods.
205
-
206
- Args:
207
- token_ids_0 (`List[int]`):
208
- List of IDs.
209
- token_ids_1 (`List[int]`, *optional*):
210
- Optional second list of IDs for sequence pairs.
211
- already_has_special_tokens (`bool`, *optional*, defaults to `False`):
212
- Whether or not the token list is already formatted with special tokens for the model.
213
-
214
- Returns:
215
- `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
216
- """
217
- if already_has_special_tokens:
218
- return super().get_special_tokens_mask(
219
- token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
220
- )
221
-
222
- if not self.add_bos_token:
223
- return super().get_special_tokens_mask(
224
- token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=False
225
- )
226
-
227
- if token_ids_1 is None:
228
- return [1] + ([0] * len(token_ids_0))
229
- return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1))