RWKV
/

English
m8than commited on
Commit
12e8b13
·
1 Parent(s): bdd45a8

initial commit

Browse files
Files changed (2) hide show
  1. README.md +93 -0
  2. v5-EagleX-v2-7B.pth +3 -0
README.md ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ ---
4
+
5
+ ![An eagle soaring above a transformer robot](https://substackcdn.com/image/fetch/w_1456,c_limit,f_webp,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2F10cf7fd1-6c72-4a99-84c2-794fb7bc52b3_2432x1664.png)
6
+
7
+ ### RWKV EagleX 7B v2 Model
8
+
9
+ > **! Important Note !**
10
+ >
11
+ > The following is the raw representation of the EagleX 7B v2 model. **This is not meant to be used with the huggingface transformers**
12
+ > And an experimental model, researched for research purposes.
13
+ >
14
+ >
15
+ > This is not an instruct tune model! (soon...)
16
+
17
+ ## Evaluation
18
+
19
+ The following shows the progression of the model from 1.1T trained to 2.25T trained.
20
+
21
+ |Model |Eagle-7B-HF|EagleX-7B-HF-v1|EagleX-7B-HF-v2|
22
+ |----------------------|-----------|---------------|---------------|
23
+ |Param Count |7.52 B |7.52 B |7.52 B |
24
+ |Tokens Trained |1.1 T |1.7 T |2.25 T |
25
+ |avg_acc |0.4822 |0.5391 |0.5495 |
26
+ |glue (acc) |0.5752 |0.7463 |0.7439 |
27
+ |anli (acc) |0.3594 |0.4847 |0.5097 |
28
+ |mnli (acc) |0.3802 |0.7928 |0.7884 |
29
+ |mnli_mismatch (acc) |0.3687 |0.7985 |0.784 |
30
+ |swag (acc) |0.568 |0.5814 |0.5905 |
31
+ |lambada_standard (acc)|0.685 |0.686 |0.7004 |
32
+ |lambada_openai (acc) |0.7425 |0.7522 |0.7502 |
33
+ |mmlu (acc) |0.3321 |0.4014 |0.438 |
34
+ |winogrande (acc) |0.674 |0.7206 |0.7332 |
35
+ |wnli (acc) |0.4225 |0.4648 |0.493 |
36
+ |truthfulqa (acc) |0.3303 |0.3268 |0.3401 |
37
+ |logiqa (acc) |0.2458 |0.2458 |0.2458 |
38
+ |logiqa2 (acc) |0.2494 |0.2595 |0.2621 |
39
+ |sciq (acc) |0.955 |0.96 |0.93 |
40
+ |piqa (acc) |0.7704 |0.7758 |0.7764 |
41
+ |arc_easy (acc) |0.7382 |0.7555 |0.7445 |
42
+ |arc_challenge (acc) |0.3951 |0.4087 |0.4155 |
43
+ |hellaswag (acc) |0.5264 |0.5411 |0.56 |
44
+ |openbookqa (acc) |0.302 |0.296 |0.304 |
45
+ |mathqa (acc) |0.26 |0.26 |0.2593 |
46
+ |arithmetic (acc) |0.245 |0.0634 |0.1703 |
47
+
48
+
49
+ Compared against other top performing models in the same weight class.
50
+
51
+ |Model |EleutherAI/pythia-6.9b|aisingapore/sealion7b|RedPajama-INCITE-7B-Base|EleutherAI/gpt-j-6b|tiiuae/falcon-rw-7b|allenai/OLMo-7B|mosaicml/mpt-7b|tiiuae/falcon-7b|Llama-2-7b-hf|EagleX-7B-HF-v2|Mistral-7B-v0.1|
52
+ |----------------------|----------------------|---------------------|------------------------|-------------------|-------------------|---------------|---------------|----------------|-------------|---------------|---------------|
53
+ |Param Count |6.86 B |7.5 B |6.86 B |6.05B |6.92 B |6.89 B |6.7 B |6.92 B |6.74 B |7.52 B |7.24 B |
54
+ |Tokens Trained |0.3 T |0.98 T |1 T |0.4 T |0.35 T |2.5 T |1 T |1.5 T |2 T |2.25 T |2 - 7 T? |
55
+ |avg_acc |0.4237 |0.4326 |0.4411 |0.4456 |0.4516 |0.4578 |0.4641 |0.4775 |0.5045 |0.5495 |0.5676 |
56
+ |glue (acc) |0.4765 |0.4483 |0.4748 |0.455 |0.4825 |0.474 |0.4874 |0.4578 |0.4289 |0.7439 |0.515 |
57
+ |anli (acc) |0.3353 |0.3478 |0.3528 |0.3391 |0.3344 |0.3478 |0.3403 |0.3541 |0.3697 |0.5097 |0.3803 |
58
+ |mnli (acc) |0.37 |0.3657 |0.336 |0.3768 |0.3632 |0.3294 |0.3784 |0.3893 |0.4269 |0.7884 |0.4542 |
59
+ |mnli_mismatch (acc) |0.3716 |0.3696 |0.327 |0.3789 |0.3708 |0.3348 |0.3751 |0.404 |0.4395 |0.784 |0.4632 |
60
+ |swag (acc) |0.5368 |0.5217 |0.5493 |0.5472 |0.5483 |0.5512 |0.5616 |0.5685 |0.5658 |0.5905 |0.5756 |
61
+ |lambada_standard (acc)|0.5201 |0.5777 |0.6078 |0.6097 |0.6062 |0.6396 |0.6208 |0.6868 |0.6808 |0.7004 |0.6944 |
62
+ |lambada_openai (acc) |0.609 |0.6377 |0.7023 |0.6779 |0.6332 |0.6872 |0.6872 |0.746 |0.7353 |0.7502 |0.7553 |
63
+ |mmlu (acc) |0.2594 |0.2705 |0.2618 |0.2648 |0.256 |0.2812 |0.2913 |0.2512 |0.4077 |0.438 |0.5964 |
64
+ |winogrande (acc) |0.6148 |0.6054 |0.6504 |0.6417 |0.6598 |0.6725 |0.6811 |0.6709 |0.6914 |0.7332 |0.7364 |
65
+ |wnli (acc) |0.3944 |0.5352 |0.5915 |0.507 |0.507 |0.5775 |0.4789 |0.4789 |0.4648 |0.493 |0.5775 |
66
+ |truthfulqa (acc) |0.313 |0.2783 |0.2957 |0.3081 |0.2945 |0.3015 |0.2708 |0.2826 |0.3205 |0.3401 |0.3537 |
67
+ |logiqa (acc) |0.2381 |0.2212 |0.2289 |0.212 |0.2181 |0.2335 |0.232 |0.2151 |0.2535 |0.2458 |0.2427 |
68
+ |logiqa2 (acc) |0.2239 |0.2188 |0.243 |0.2316 |0.2354 |0.2506 |0.2525 |0.2252 |0.2564 |0.2621 |0.3022 |
69
+ |sciq (acc) |0.889 |0.918 |0.925 |0.914 |0.932 |0.927 |0.939 |0.944 |0.939 |0.93 |0.959 |
70
+ |piqa (acc) |0.7476 |0.7601 |0.5247 |0.753 |0.7758 |0.7878 |0.7933 |0.7949 |0.7807 |0.7764 |0.8052 |
71
+ |arc_easy (acc) |0.6654 |0.678 |0.7193 |0.6713 |0.7184 |0.7353 |0.7492 |0.7479 |0.7643 |0.7445 |0.8081 |
72
+ |arc_challenge (acc) |0.32 |0.3183 |0.3686 |0.3396 |0.366 |0.3677 |0.3968 |0.4027 |0.4309 |0.4155 |0.5009 |
73
+ |hellaswag (acc) |0.4768 |0.5015 |0.5247 |0.4955 |0.5399 |0.5572 |0.5723 |0.5772 |0.5713 |0.56 |0.6131 |
74
+ |openbookqa (acc) |0.248 |0.236 |0.292 |0.288 |0.314 |0.292 |0.322 |0.306 |0.316 |0.304 |0.33 |
75
+ |mathqa (acc) |0.26 |0.2372 |0.2623 |0.2633 |0.26 |0.26 |0.26 |0.2884 |0.2801 |0.2593 |0.3554 |
76
+ |arithmetic (acc) |0.0271 |0.0379 |0.0254 |0.0832 |0.0669 |0.0069 |0.0562 |0.2367 |0.4703 |0.1703 |0.9004 |
77
+
78
+
79
+
80
+ See the following, for the full details on this model: [https://blog.rwkv.com/p/336f47bf-d8e9-4174-ac1d-02c6c8a99bc0](https://blog.rwkv.com/p/336f47bf-d8e9-4174-ac1d-02c6c8a99bc0)
81
+
82
+
83
+ ## Links
84
+ - [HF Demo](###)
85
+ - [Our wiki](https://wiki.rwkv.com)
86
+ - [Full eval data](https://docs.google.com/spreadsheets/d/1CBLU6yKkW-8FMvGD4INO3qjeHZ0qkKnZFcM6n6lWNOs/edit#gid=912381775)
87
+
88
+ ## Acknowledgement
89
+ We are grateful for the help and support from the following key groups:
90
+
91
+ - [Recursal.ai](https://recursal.ai) team for financing the GPU resources, and managing the training of this foundation model - you can run the Eagle line of RWKV models on their cloud / on-premise platform today.
92
+ - EleutherAI for their support, especially in the v5/v6 Eagle/Finch paper
93
+ - Linux Foundation AI & Data group for supporting and hosting the RWKV project
v5-EagleX-v2-7B.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b4a07adb69c1ed8b8bcd3f5636914a0bfd67a1452ae2a77fbd8f193261761956
3
+ size 15036198570