# coding=utf-8 # Copyright 2024 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization classes for RWKV6.""" import os import re from typing import TYPE_CHECKING, List, Optional, Tuple from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer from transformers.utils import logging if TYPE_CHECKING: pass logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = { "vocab_file": "rwkv_vocab_v20230424.txt", } class TRIE: __slots__ = tuple("ch,to,values,front".split(",")) to: list values: set def __init__(self, front=None, ch=None): self.ch = ch self.to = [None for ch in range(256)] self.values = set() self.front = front def __repr__(self): fr = self ret = [] while fr != None: if fr.ch != None: ret.append(fr.ch) fr = fr.front return "" % (ret[::-1], self.values) def add(self, key: bytes, idx: int = 0, val=None): if idx == len(key): if val is None: val = key self.values.add(val) return self ch = key[idx] if self.to[ch] is None: self.to[ch] = TRIE(front=self, ch=ch) return self.to[ch].add(key, idx=idx + 1, val=val) def find_longest(self, key: bytes, idx: int = 0): u: TRIE = self ch: int = key[idx] while u.to[ch] is not None: u = u.to[ch] idx += 1 if u.values: ret = idx, u, u.values if idx == len(key): break ch = key[idx] return ret class RWKV_TOKENIZER: def __init__(self, file_name): self.idx2token = {} sorted = [] # must be already sorted with open(file_name, "r", encoding="utf-8") as f: lines = f.readlines() for l in lines: idx = int(l[: l.index(" ")]) x = eval(l[l.index(" ") : l.rindex(" ")]) x = x.encode("utf-8") if isinstance(x, str) else x assert isinstance(x, bytes) assert len(x) == int(l[l.rindex(" ") :]) sorted += [x] self.idx2token[idx] = x self.token2idx = {} for k, v in self.idx2token.items(): self.token2idx[v] = int(k) self.root = TRIE() for t, i in self.token2idx.items(): _ = self.root.add(t, val=(t, i)) def encodeBytes(self, src: bytes): idx: int = 0 tokens = [] while idx < len(src): _idx: int = idx idx, _, values = self.root.find_longest(src, idx) assert idx != _idx _, token = next(iter(values)) tokens.append(token) return tokens def decodeBytes(self, tokens): return b"".join(map(lambda i: self.idx2token[i], tokens)) def encode(self, src): if isinstance(src, str): return [self.encodeBytes(src.encode("utf-8"))] elif isinstance(src, list): return [self.encodeBytes(s.encode("utf-8")) for s in src] def decode(self, tokens): return [self.decodeBytes(batch).decode("utf-8") for batch in tokens] # try: # return self.decodeBytes(tokens).decode('utf-8') # except: # return '\ufffd' # bad utf-8 def printTokens(self, tokens): for i in tokens: s = self.idx2token[i] try: s = s.decode("utf-8") except: pass print(f"{repr(s)}{i}", end=" ") print() class Rwkv6Tokenizer(PreTrainedTokenizer): vocab_files_names = VOCAB_FILES_NAMES model_input_names = ["input_ids", "attention_mask"] def __init__( self, vocab_file, bos_token="", eos_token="", unk_token="", **kwargs ): if not os.path.isfile(vocab_file): raise ValueError( f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained" " model use `tokenizer = BertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" ) with open(vocab_file, "r", encoding="utf-8") as reader: tokens = reader.readlines() if "add_bos_token" in kwargs: self.add_bos_token = kwargs["add_bos_token"] else: self.add_bos_token = False self.trie_tokenizer = RWKV_TOKENIZER(vocab_file) vocab = self.trie_tokenizer.token2idx self.encoder = vocab self.decoder = {v: k for k, v in vocab.items()} self._added_tokens_decoder = {0: AddedToken(str(bos_token))} super().__init__( bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, **kwargs ) @property def vocab_size(self): return len(self.encoder) def get_vocab(self): vocab = {str(self.convert_ids_to_tokens(i)): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def _tokenize(self, text, split_special_tokens=False): # return self.wordpiece_tokenizer.tokenize(text.encode("utf-8")) return self.trie_tokenizer.encode(text)[0] def _decode(self, token_ids, **kwargs): return self.trie_tokenizer.decodeBytes(token_ids).decode("utf-8") def _convert_token_to_id(self, token): if isinstance(token, (int)): return token elif isinstance(token, (bytes)): return self.encoder.get(token) return self.encoder.get(token.encode("utf-8")) def _convert_id_to_token(self, index): """Converts an index (integer) in a token (byte) using the vocab.""" token = self.decoder.get(index, self.unk_token) if isinstance(token, (bytes)): token = token.decode("utf-8", errors="replace") return token def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (bytes) in a single string. Additional tokens are encoded to bytes""" out_string = b"".join( [k.encode(errors="replace") if isinstance(k, str) else k for k in tokens] ).decode("utf-8") return out_string def save_vocabulary( self, save_directory: str, filename_prefix: Optional[str] = None ) -> Tuple[str]: index = 0 if os.path.isdir(save_directory): vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + "vocab.txt", ) else: vocab_file = ( filename_prefix + "-" if filename_prefix else "" ) + save_directory with open(vocab_file, "w", encoding="utf-8") as writer: for token, token_index in sorted( self.encoder.items(), key=lambda kv: kv[1] ): if index != token_index: logger.warning( f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive." " Please check that the vocabulary is not corrupted!" ) index = token_index writer.write(str(token) + "\n") index += 1 return (vocab_file,) def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None): if self.add_bos_token: bos_token_ids = [self.bos_token_id] else: bos_token_ids = [] output = bos_token_ids + token_ids_0 if token_ids_1 is None: return output return output + bos_token_ids + token_ids_1 def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False, ) -> List[int]: """ Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` or `encode_plus` methods. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True, ) if not self.add_bos_token: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=False, ) if token_ids_1 is None: return [1] + ([0] * len(token_ids_0)) return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1))