--- tags: - spacy - token-classification language: - en model-index: - name: en_grantss results: - task: name: NER type: token-classification metrics: - name: NER Precision type: precision value: 0.769098972 - name: NER Recall type: recall value: 0.6617812852 - name: NER F Score type: f_score value: 0.7114156528 --- ## Introduction Three variants of the model is built with Spacy3 for grant applications. A simple named entity recognition custom model from scratch with annotation tool prodi.gy. Github info: https://github.com/RaThorat/ner_model_prodigy The most general model is 'en_grantss'. The model en_ncv is more suitable to extract entities from narrative CV's. The model en_grant is the first model in the series. | Feature | Description | | --- | --- | | **Name** | `en_grantss` | | **Version** | `0.0.0` | | **spaCy** | `>=3.4.3,<3.5.0` | | **Default Pipeline** | `tok2vec`, `ner` | | **Components** | `tok2vec`, `ner` | | **Vectors** | 0 keys, 0 unique vectors (0 dimensions) | | **Sources** | research grant applications | | **License** | n/a | | **Author** | [Rahul Thorat]() | ### Label Scheme
View label scheme (18 labels for 1 components) | Component | Labels | | --- | --- | | **`ner`** | `ACTIVITY`, `DISCIPLINE`, `EVENT`, `GPE`, `JOURNAL`, `KEYWORD`, `LICENSE`, `MEDIUM`, `METASTD`, `MONEY`, `ORG`, `PERSON`, `POSITION`, `PRODUCT`, `RECOGNITION`, `REF`, `REPOSITORY`, `WEBSITE` |
### Accuracy | Type | Score | | --- | --- | | `ENTS_F` | 71.14 | | `ENTS_P` | 76.91 | | `ENTS_R` | 66.18 | | `TOK2VEC_LOSS` | 1412244.09 | | `NER_LOSS` | 1039417.96 |