File size: 5,548 Bytes
b59ac87
26d1f9e
c7c3929
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b59ac87
 
64a6f2c
b59ac87
e509c9b
b59ac87
 
4c8f4c6
 
8bb4718
4c8f4c6
 
 
fadd8ff
4c8f4c6
 
 
 
c0475d8
 
 
 
 
536da40
 
 
 
 
 
 
 
9b001df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae3d3ea
 
 
 
c7c3929
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
---
license: apache-2.0
library_name: transformers
model-index:
- name: Mistral-Instruct-Ukrainian-SFT
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 57.85
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Radu1999/Mistral-Instruct-Ukrainian-SFT
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 83.12
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Radu1999/Mistral-Instruct-Ukrainian-SFT
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 60.95
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Radu1999/Mistral-Instruct-Ukrainian-SFT
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 54.14
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Radu1999/Mistral-Instruct-Ukrainian-SFT
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 77.51
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Radu1999/Mistral-Instruct-Ukrainian-SFT
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 39.42
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Radu1999/Mistral-Instruct-Ukrainian-SFT
      name: Open LLM Leaderboard
---

# Model card for Mistral-Instruct-Ukrainian-SFT

Supervised finetuning of Mistral-7B-Instruct-v0.2 on Ukrainian datasets.


## Instruction format

In order to leverage instruction fine-tuning, your prompt should be surrounded by `[INST]` and `[/INST]` tokens.

E.g.
```
text = "[INST]Відповідайте лише буквою правильної відповіді: Елементи експресіонізму наявні у творі: A. «Камінний хрест», B. «Інститутка», C. «Маруся», D. «Людина»[/INST]"
```

This format is available as a [chat template](https://huggingface.co/docs/transformers/main/chat_templating) via the `apply_chat_template()` method:

## Model Architecture
This instruction model is based on Mistral-7B-v0.2, a transformer model with the following architecture choices:
- Grouped-Query Attention
- Sliding-Window Attention
- Byte-fallback BPE tokenizer

## Datasets
- [UA-SQUAD](https://huggingface.co/datasets/FIdo-AI/ua-squad/resolve/main/ua_squad_dataset.json)
- [Ukrainian StackExchange](https://huggingface.co/datasets/zeusfsx/ukrainian-stackexchange)
- [UAlpaca Dataset](https://github.com/robinhad/kruk/blob/main/data/cc-by-nc/alpaca_data_translated.json)
- [Ukrainian Subset from Belebele Dataset](https://github.com/facebookresearch/belebele)
- [Ukrainian Subset from XQA](https://github.com/thunlp/XQA)
  
## 💻 Usage

```python
!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "Radu1999/Mistral-Instruct-Ukrainian-SFT"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.bfloat16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```

## Author

Radu Chivereanu
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Radu1999__Mistral-Instruct-Ukrainian-SFT)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |62.17|
|AI2 Reasoning Challenge (25-Shot)|57.85|
|HellaSwag (10-Shot)              |83.12|
|MMLU (5-Shot)                    |60.95|
|TruthfulQA (0-shot)              |54.14|
|Winogrande (5-shot)              |77.51|
|GSM8k (5-shot)                   |39.42|