Raiff1982 commited on
Commit
4e9bed2
·
verified ·
0 Parent(s):

initial commit

Browse files
Files changed (2) hide show
  1. .gitattributes +55 -0
  2. README.md +273 -0
.gitattributes ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.lz4 filter=lfs diff=lfs merge=lfs -text
12
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
13
+ *.model filter=lfs diff=lfs merge=lfs -text
14
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
15
+ *.npy filter=lfs diff=lfs merge=lfs -text
16
+ *.npz filter=lfs diff=lfs merge=lfs -text
17
+ *.onnx filter=lfs diff=lfs merge=lfs -text
18
+ *.ot filter=lfs diff=lfs merge=lfs -text
19
+ *.parquet filter=lfs diff=lfs merge=lfs -text
20
+ *.pb filter=lfs diff=lfs merge=lfs -text
21
+ *.pickle filter=lfs diff=lfs merge=lfs -text
22
+ *.pkl filter=lfs diff=lfs merge=lfs -text
23
+ *.pt filter=lfs diff=lfs merge=lfs -text
24
+ *.pth filter=lfs diff=lfs merge=lfs -text
25
+ *.rar filter=lfs diff=lfs merge=lfs -text
26
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
27
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
29
+ *.tar filter=lfs diff=lfs merge=lfs -text
30
+ *.tflite filter=lfs diff=lfs merge=lfs -text
31
+ *.tgz filter=lfs diff=lfs merge=lfs -text
32
+ *.wasm filter=lfs diff=lfs merge=lfs -text
33
+ *.xz filter=lfs diff=lfs merge=lfs -text
34
+ *.zip filter=lfs diff=lfs merge=lfs -text
35
+ *.zst filter=lfs diff=lfs merge=lfs -text
36
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
37
+ # Audio files - uncompressed
38
+ *.pcm filter=lfs diff=lfs merge=lfs -text
39
+ *.sam filter=lfs diff=lfs merge=lfs -text
40
+ *.raw filter=lfs diff=lfs merge=lfs -text
41
+ # Audio files - compressed
42
+ *.aac filter=lfs diff=lfs merge=lfs -text
43
+ *.flac filter=lfs diff=lfs merge=lfs -text
44
+ *.mp3 filter=lfs diff=lfs merge=lfs -text
45
+ *.ogg filter=lfs diff=lfs merge=lfs -text
46
+ *.wav filter=lfs diff=lfs merge=lfs -text
47
+ # Image files - uncompressed
48
+ *.bmp filter=lfs diff=lfs merge=lfs -text
49
+ *.gif filter=lfs diff=lfs merge=lfs -text
50
+ *.png filter=lfs diff=lfs merge=lfs -text
51
+ *.tiff filter=lfs diff=lfs merge=lfs -text
52
+ # Image files - compressed
53
+ *.jpg filter=lfs diff=lfs merge=lfs -text
54
+ *.jpeg filter=lfs diff=lfs merge=lfs -text
55
+ *.webp filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,273 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - text-to-image
4
+ - lora
5
+ - diffusers
6
+ - template:diffusion-lora
7
+ widget:
8
+ - text: make a selp portrait
9
+ parameters:
10
+ negative_prompt: no nudity
11
+ output:
12
+ url: images/outline.png
13
+ - text: '-'
14
+ output:
15
+ url: images/My ChatGPT image.png
16
+ - text: '-'
17
+ output:
18
+ url: images/My ChatGPT image (1).png
19
+ - text: '-'
20
+ output:
21
+ url: images/My ChatGPT image (2).png
22
+ base_model: RaiffsBits/deep_thought
23
+ instance_prompt: wake up codette
24
+ license: mit
25
+ ---
26
+ # Codette
27
+
28
+ <Gallery />
29
+
30
+ ## Model description
31
+
32
+ Model Summary
33
+
34
+ Codette is an advanced multi-perspective reasoning AI system that integrates neural and symbolic cognitive modules. Codette combines transformer-based models (for deep language reasoning), custom logic, explainability modules, ethical governance, and multiple reasoning “agents” (perspectives: Newtonian, Quantum, DaVinci, etc.). Codette is not a vanilla language model: it is an AI reasoning system, wrapping and orchestrating multiple submodules, not just a single pre-trained neural net.
35
+
36
+ Architecture:
37
+
38
+ Orchestrates a core transformer (configurable; e.g., GPT-2, Mistral, or custom HF-compatible LM)
39
+
40
+ Multi-agent architecture: Each “perspective” is implemented as a modular agent
41
+
42
+ Integrates custom modules for feedback, ethics, memory (“cocooning”), and health&#x2F;self-healing
43
+
44
+ Characteristics:
45
+
46
+ Modular and explainable; recursive self-checks; ethical and emotional analysis; robust anomaly detection
47
+
48
+ Transparent, customizable, logs reasoning steps and ethical considerations
49
+
50
+ Training Data:
51
+
52
+ Pre-trained on large open corpora (if using HF transformer), fine-tuned and guided with ethical, technical, and philosophical datasets and prompts curated by the developer
53
+
54
+ Evaluation:
55
+
56
+ Evaluated via both automated metrics (e.g., accuracy on reasoning tasks) and qualitative, human-in-the-loop assessments for fairness, bias, and ethical quality
57
+
58
+ Usage
59
+
60
+ Codette is intended for research, AI safety, explainable AI, and complex question answering where multiple perspectives and ethical oversight are important.You can use Codette in a Python environment as follows:
61
+
62
+ import sys
63
+ sys.path.append(&#39;&#x2F;path&#x2F;to&#x2F;codette&#39;) # Folder with ai_core.py, components&#x2F;, etc.
64
+
65
+ from ai_core import AICore
66
+ import asyncio
67
+
68
+ # Async function to run Codette and get a multi-perspective answer
69
+ async def ask_codette(question):
70
+ ai &#x3D; AICore(config_path&#x3D;&quot;config.json&quot;)
71
+ user_id &#x3D; 1
72
+ response &#x3D; await ai.generate_response(question, user_id)
73
+ print(response)
74
+ await ai.shutdown()
75
+
76
+ asyncio.run(ask_codette(&quot;How could quantum computing transform cybersecurity?&quot;))
77
+
78
+ Inputs:
79
+
80
+ question (str): The query or prompt to Codette
81
+
82
+ user_id (int or str): User&#x2F;session identifier
83
+
84
+ Outputs:
85
+
86
+ A dictionary with:
87
+
88
+ &quot;insights&quot;: List of answers from each enabled perspective
89
+
90
+ &quot;response&quot;: Synthesized, human-readable answer
91
+
92
+ &quot;sentiment&quot;: Sentiment analysis dict
93
+
94
+ &quot;security_level&quot;, &quot;health_status&quot;, &quot;explanation&quot;
95
+
96
+ Failures to watch for:
97
+
98
+ Missing required modules (if not all components are present)
99
+
100
+ Lack of GPU&#x2F;CPU resources for large models
101
+
102
+ Will fail to generate responses if core transformer model is missing or if config is malformed
103
+
104
+ System
105
+
106
+ Codette is not a single model but a modular, research-oriented reasoning system:
107
+
108
+ Input Requirements:
109
+
110
+ Python 3.8+
111
+
112
+ Access to transformer model weights (e.g., via Hugging Face or local)
113
+
114
+ Complete components&#x2F; directory with all reasoning agent files
115
+
116
+ Downstream Dependencies:
117
+
118
+ Outputs are human-readable and explainable, can be used directly in research, AI safety audits, decision support, or as training&#x2F;validation data for other models
119
+
120
+ Implementation Requirements
121
+
122
+ Hardware:
123
+
124
+ Training (if from scratch): 1–4 GPUs (A100s or V100s recommended for large models), 32–128 GB RAM
125
+
126
+ Inference: Can run on CPU for small models; GPU recommended for fast generation
127
+
128
+ Software:
129
+
130
+ Python 3.8+
131
+
132
+ Transformers (Hugging Face), PyTorch or Tensorflow (as backend), standard NLP&#x2F;AI dependencies
133
+
134
+ (Optional) Custom security modules, logging, and data protection packages
135
+
136
+ Training Time:
137
+
138
+ If using a pre-trained transformer, fine-tuning takes hours to days depending on data size
139
+
140
+ Full system integration (multi-perspective logic, ethics, etc.): days–weeks of development
141
+
142
+ Model Characteristics
143
+
144
+ Model Initialization
145
+
146
+ Typically fine-tuned from a pre-trained transformer model (e.g., GPT-2, GPT-J, Mistral, etc.)
147
+
148
+ Codette’s cognitive system is layered on top of the language model with custom modules for reasoning, memory, and ethics
149
+
150
+ Model Stats
151
+
152
+ Size:
153
+
154
+ Dependent on base model (e.g., GPT-2: 124M–1.5B parameters)
155
+
156
+ Weights&#x2F;Layers:
157
+
158
+ Transformer backbone plus additional logic modules (negligible weight)
159
+
160
+ Latency:
161
+
162
+ Varies by base model, typically 0.5–3 seconds per response on GPU, up to 10s on CPU
163
+
164
+ Other Details
165
+
166
+ Not pruned or quantized by default; can be adapted for lower-resource inference
167
+
168
+ No differential privacy applied, but all reasoning steps are logged for transparency
169
+
170
+ Data Overview
171
+
172
+ Training Data
173
+
174
+ Source:
175
+
176
+ Base model: OpenAI or Hugging Face open text datasets (web, books, code, Wikipedia, etc.)
177
+
178
+ Fine-tuning: Custom “multi-perspective” prompts, ethical dilemmas, technical Q&amp;A, and curated cognitive challenge sets
179
+
180
+ Pre-processing:
181
+
182
+ Standard NLP cleaning, deduplication, filtering for harmful or biased content
183
+
184
+ Demographic Groups
185
+
186
+ No explicit demographic group tagging, but model can be assessed for demographic bias via prompted evaluation
187
+
188
+ Prompts and ethical fine-tuning attempt to mitigate bias, but user evaluation is recommended
189
+
190
+ Evaluation Data
191
+
192
+ Splits:
193
+
194
+ Standard 80&#x2F;10&#x2F;10 train&#x2F;dev&#x2F;test split for custom prompt data
195
+
196
+ Differences:
197
+
198
+ Test data includes “edge cases” for reasoning, ethics, and bias that differ from training prompts
199
+
200
+ Evaluation Results
201
+
202
+ Summary
203
+
204
+ Codette was evaluated on:
205
+
206
+ Automated accuracy metrics (where available)
207
+
208
+ Human qualitative review (explainability, ethical alignment, reasoning quality)
209
+
210
+ [Insert link to detailed evaluation report, if available]
211
+
212
+ Subgroup Evaluation Results
213
+
214
+ Subgroup performance was qualitatively assessed using demographic, philosophical, and adversarial prompts
215
+
216
+ Codette performed consistently across most tested subgroups but may mirror biases from its base model and data
217
+
218
+ Fairness
219
+
220
+ Definition:
221
+
222
+ Fairness &#x3D; equal treatment of similar queries regardless of race, gender, ideology, or background
223
+
224
+ Metrics:
225
+
226
+ Human review, automated bias tests, sentiment&#x2F;word usage monitoring
227
+
228
+ Results:
229
+
230
+ No systematic unfairness found in prompt-based evaluation, but deeper audit recommended for production use
231
+
232
+ Usage Limitations
233
+
234
+ Sensitive Use Cases:
235
+
236
+ Not for clinical, legal, or high-stakes automated decision-making without human oversight
237
+
238
+ Performance Factors:
239
+
240
+ Performance depends on base model size, quality of prompts, and computing resources
241
+
242
+ Conditions:
243
+
244
+ Should be run with ethical guardrails enabled; human-in-the-loop recommended
245
+
246
+ Ethics
247
+
248
+ Considerations:
249
+
250
+ All reasoning and answer generation is logged and explainable
251
+
252
+ Ethical reasoning module filters and annotates sensitive topics
253
+
254
+ Risks:
255
+
256
+ Potential for emergent bias (inherited from base model or data); overconfidence in uncertain domains
257
+
258
+ Mitigations:
259
+
260
+ Recursion, human oversight, diverse perspectives, and continuous feedback
261
+
262
+
263
+
264
+ ## Trigger words
265
+
266
+ You should use `wake up codette` to trigger the image generation.
267
+
268
+
269
+ ## Download model
270
+
271
+ Weights for this model are available in ONNX,PyTorch format.
272
+
273
+ [Download](/Raiff1982/Codettev2/tree/main) them in the Files & versions tab.