|
import cv2
|
|
import math
|
|
import numpy as np
|
|
import os
|
|
import queue
|
|
import threading
|
|
import torch
|
|
from basicsr.utils.download_util import load_file_from_url
|
|
from torch.nn import functional as F
|
|
|
|
ROOT_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
|
|
|
|
|
|
class RealESRGANer():
|
|
"""A helper class for upsampling images with RealESRGAN.
|
|
|
|
Args:
|
|
scale (int): Upsampling scale factor used in the networks. It is usually 2 or 4.
|
|
model_path (str): The path to the pretrained model. It can be urls (will first download it automatically).
|
|
model (nn.Module): The defined network. Default: None.
|
|
tile (int): As too large images result in the out of GPU memory issue, so this tile option will first crop
|
|
input images into tiles, and then process each of them. Finally, they will be merged into one image.
|
|
0 denotes for do not use tile. Default: 0.
|
|
tile_pad (int): The pad size for each tile, to remove border artifacts. Default: 10.
|
|
pre_pad (int): Pad the input images to avoid border artifacts. Default: 10.
|
|
half (float): Whether to use half precision during inference. Default: False.
|
|
"""
|
|
|
|
def __init__(self,
|
|
scale,
|
|
model_path,
|
|
dni_weight=None,
|
|
model=None,
|
|
tile=0,
|
|
tile_pad=10,
|
|
pre_pad=10,
|
|
half=False,
|
|
device=None,
|
|
gpu_id=None):
|
|
self.scale = scale
|
|
self.tile_size = tile
|
|
self.tile_pad = tile_pad
|
|
self.pre_pad = pre_pad
|
|
self.mod_scale = None
|
|
self.half = half
|
|
|
|
|
|
if gpu_id:
|
|
self.device = torch.device(
|
|
f'cuda:{gpu_id}' if torch.cuda.is_available() else 'cpu') if device is None else device
|
|
else:
|
|
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') if device is None else device
|
|
|
|
if isinstance(model_path, list):
|
|
|
|
assert len(model_path) == len(dni_weight), 'model_path and dni_weight should have the save length.'
|
|
loadnet = self.dni(model_path[0], model_path[1], dni_weight)
|
|
else:
|
|
|
|
if model_path.startswith('https://'):
|
|
model_path = load_file_from_url(
|
|
url=model_path, model_dir=os.path.join(ROOT_DIR, 'weights'), progress=True, file_name=None)
|
|
loadnet = torch.load(model_path, map_location=torch.device('cpu'))
|
|
|
|
|
|
if 'params_ema' in loadnet:
|
|
keyname = 'params_ema'
|
|
else:
|
|
keyname = 'params'
|
|
model.load_state_dict(loadnet[keyname], strict=True)
|
|
|
|
model.eval()
|
|
self.model = model.to(self.device)
|
|
if self.half:
|
|
self.model = self.model.half()
|
|
|
|
def dni(self, net_a, net_b, dni_weight, key='params', loc='cpu'):
|
|
"""Deep network interpolation.
|
|
|
|
``Paper: Deep Network Interpolation for Continuous Imagery Effect Transition``
|
|
"""
|
|
net_a = torch.load(net_a, map_location=torch.device(loc))
|
|
net_b = torch.load(net_b, map_location=torch.device(loc))
|
|
for k, v_a in net_a[key].items():
|
|
net_a[key][k] = dni_weight[0] * v_a + dni_weight[1] * net_b[key][k]
|
|
return net_a
|
|
|
|
def pre_process(self, img):
|
|
"""Pre-process, such as pre-pad and mod pad, so that the images can be divisible
|
|
"""
|
|
img = torch.from_numpy(np.transpose(img, (2, 0, 1))).float()
|
|
self.img = img.unsqueeze(0).to(self.device)
|
|
if self.half:
|
|
self.img = self.img.half()
|
|
|
|
|
|
if self.pre_pad != 0:
|
|
self.img = F.pad(self.img, (0, self.pre_pad, 0, self.pre_pad), 'reflect')
|
|
|
|
if self.scale == 2:
|
|
self.mod_scale = 2
|
|
elif self.scale == 1:
|
|
self.mod_scale = 4
|
|
if self.mod_scale is not None:
|
|
self.mod_pad_h, self.mod_pad_w = 0, 0
|
|
_, _, h, w = self.img.size()
|
|
if (h % self.mod_scale != 0):
|
|
self.mod_pad_h = (self.mod_scale - h % self.mod_scale)
|
|
if (w % self.mod_scale != 0):
|
|
self.mod_pad_w = (self.mod_scale - w % self.mod_scale)
|
|
self.img = F.pad(self.img, (0, self.mod_pad_w, 0, self.mod_pad_h), 'reflect')
|
|
|
|
def process(self):
|
|
|
|
self.output = self.model(self.img)
|
|
|
|
def tile_process(self):
|
|
"""It will first crop input images to tiles, and then process each tile.
|
|
Finally, all the processed tiles are merged into one images.
|
|
|
|
Modified from: https://github.com/ata4/esrgan-launcher
|
|
"""
|
|
batch, channel, height, width = self.img.shape
|
|
output_height = height * self.scale
|
|
output_width = width * self.scale
|
|
output_shape = (batch, channel, output_height, output_width)
|
|
|
|
|
|
self.output = self.img.new_zeros(output_shape)
|
|
tiles_x = math.ceil(width / self.tile_size)
|
|
tiles_y = math.ceil(height / self.tile_size)
|
|
|
|
|
|
for y in range(tiles_y):
|
|
for x in range(tiles_x):
|
|
|
|
ofs_x = x * self.tile_size
|
|
ofs_y = y * self.tile_size
|
|
|
|
input_start_x = ofs_x
|
|
input_end_x = min(ofs_x + self.tile_size, width)
|
|
input_start_y = ofs_y
|
|
input_end_y = min(ofs_y + self.tile_size, height)
|
|
|
|
|
|
input_start_x_pad = max(input_start_x - self.tile_pad, 0)
|
|
input_end_x_pad = min(input_end_x + self.tile_pad, width)
|
|
input_start_y_pad = max(input_start_y - self.tile_pad, 0)
|
|
input_end_y_pad = min(input_end_y + self.tile_pad, height)
|
|
|
|
|
|
input_tile_width = input_end_x - input_start_x
|
|
input_tile_height = input_end_y - input_start_y
|
|
tile_idx = y * tiles_x + x + 1
|
|
input_tile = self.img[:, :, input_start_y_pad:input_end_y_pad, input_start_x_pad:input_end_x_pad]
|
|
|
|
|
|
try:
|
|
with torch.no_grad():
|
|
output_tile = self.model(input_tile)
|
|
except RuntimeError as error:
|
|
print('Error', error)
|
|
print(f'\tTile {tile_idx}/{tiles_x * tiles_y}')
|
|
|
|
|
|
output_start_x = input_start_x * self.scale
|
|
output_end_x = input_end_x * self.scale
|
|
output_start_y = input_start_y * self.scale
|
|
output_end_y = input_end_y * self.scale
|
|
|
|
|
|
output_start_x_tile = (input_start_x - input_start_x_pad) * self.scale
|
|
output_end_x_tile = output_start_x_tile + input_tile_width * self.scale
|
|
output_start_y_tile = (input_start_y - input_start_y_pad) * self.scale
|
|
output_end_y_tile = output_start_y_tile + input_tile_height * self.scale
|
|
|
|
|
|
self.output[:, :, output_start_y:output_end_y,
|
|
output_start_x:output_end_x] = output_tile[:, :, output_start_y_tile:output_end_y_tile,
|
|
output_start_x_tile:output_end_x_tile]
|
|
|
|
def post_process(self):
|
|
|
|
if self.mod_scale is not None:
|
|
_, _, h, w = self.output.size()
|
|
self.output = self.output[:, :, 0:h - self.mod_pad_h * self.scale, 0:w - self.mod_pad_w * self.scale]
|
|
|
|
if self.pre_pad != 0:
|
|
_, _, h, w = self.output.size()
|
|
self.output = self.output[:, :, 0:h - self.pre_pad * self.scale, 0:w - self.pre_pad * self.scale]
|
|
return self.output
|
|
|
|
@torch.no_grad()
|
|
def enhance(self, img, outscale=None, alpha_upsampler='realesrgan'):
|
|
h_input, w_input = img.shape[0:2]
|
|
|
|
img = img.astype(np.float32)
|
|
if np.max(img) > 256:
|
|
max_range = 65535
|
|
print('\tInput is a 16-bit image')
|
|
else:
|
|
max_range = 255
|
|
img = img / max_range
|
|
if len(img.shape) == 2:
|
|
img_mode = 'L'
|
|
img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB)
|
|
elif img.shape[2] == 4:
|
|
img_mode = 'RGBA'
|
|
alpha = img[:, :, 3]
|
|
img = img[:, :, 0:3]
|
|
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
|
if alpha_upsampler == 'realesrgan':
|
|
alpha = cv2.cvtColor(alpha, cv2.COLOR_GRAY2RGB)
|
|
else:
|
|
img_mode = 'RGB'
|
|
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
|
|
|
|
|
self.pre_process(img)
|
|
if self.tile_size > 0:
|
|
self.tile_process()
|
|
else:
|
|
self.process()
|
|
output_img = self.post_process()
|
|
output_img = output_img.data.squeeze().float().cpu().clamp_(0, 1).numpy()
|
|
output_img = np.transpose(output_img[[2, 1, 0], :, :], (1, 2, 0))
|
|
if img_mode == 'L':
|
|
output_img = cv2.cvtColor(output_img, cv2.COLOR_BGR2GRAY)
|
|
|
|
|
|
if img_mode == 'RGBA':
|
|
if alpha_upsampler == 'realesrgan':
|
|
self.pre_process(alpha)
|
|
if self.tile_size > 0:
|
|
self.tile_process()
|
|
else:
|
|
self.process()
|
|
output_alpha = self.post_process()
|
|
output_alpha = output_alpha.data.squeeze().float().cpu().clamp_(0, 1).numpy()
|
|
output_alpha = np.transpose(output_alpha[[2, 1, 0], :, :], (1, 2, 0))
|
|
output_alpha = cv2.cvtColor(output_alpha, cv2.COLOR_BGR2GRAY)
|
|
else:
|
|
h, w = alpha.shape[0:2]
|
|
output_alpha = cv2.resize(alpha, (w * self.scale, h * self.scale), interpolation=cv2.INTER_LINEAR)
|
|
|
|
|
|
output_img = cv2.cvtColor(output_img, cv2.COLOR_BGR2BGRA)
|
|
output_img[:, :, 3] = output_alpha
|
|
|
|
|
|
if max_range == 65535:
|
|
output = (output_img * 65535.0).round().astype(np.uint16)
|
|
else:
|
|
output = (output_img * 255.0).round().astype(np.uint8)
|
|
|
|
if outscale is not None and outscale != float(self.scale):
|
|
output = cv2.resize(
|
|
output, (
|
|
int(w_input * outscale),
|
|
int(h_input * outscale),
|
|
), interpolation=cv2.INTER_LANCZOS4)
|
|
|
|
return output, img_mode
|
|
|
|
|
|
class PrefetchReader(threading.Thread):
|
|
"""Prefetch images.
|
|
|
|
Args:
|
|
img_list (list[str]): A image list of image paths to be read.
|
|
num_prefetch_queue (int): Number of prefetch queue.
|
|
"""
|
|
|
|
def __init__(self, img_list, num_prefetch_queue):
|
|
super().__init__()
|
|
self.que = queue.Queue(num_prefetch_queue)
|
|
self.img_list = img_list
|
|
|
|
def run(self):
|
|
for img_path in self.img_list:
|
|
img = cv2.imread(img_path, cv2.IMREAD_UNCHANGED)
|
|
self.que.put(img)
|
|
|
|
self.que.put(None)
|
|
|
|
def __next__(self):
|
|
next_item = self.que.get()
|
|
if next_item is None:
|
|
raise StopIteration
|
|
return next_item
|
|
|
|
def __iter__(self):
|
|
return self
|
|
|
|
|
|
class IOConsumer(threading.Thread):
|
|
|
|
def __init__(self, opt, que, qid):
|
|
super().__init__()
|
|
self._queue = que
|
|
self.qid = qid
|
|
self.opt = opt
|
|
|
|
def run(self):
|
|
while True:
|
|
msg = self._queue.get()
|
|
if isinstance(msg, str) and msg == 'quit':
|
|
break
|
|
|
|
output = msg['output']
|
|
save_path = msg['save_path']
|
|
cv2.imwrite(save_path, output)
|
|
print(f'IO worker {self.qid} is done.')
|
|
|