|
import cv2
|
|
import numpy as np
|
|
import os
|
|
import torch
|
|
from skimage import transform as trans
|
|
|
|
from basicsr.utils import imwrite
|
|
|
|
try:
|
|
import dlib
|
|
except ImportError:
|
|
print('Please install dlib before testing face restoration.' 'Reference: https://github.com/davisking/dlib')
|
|
|
|
|
|
class FaceRestorationHelper(object):
|
|
"""Helper for the face restoration pipeline."""
|
|
|
|
def __init__(self, upscale_factor, face_size=512):
|
|
self.upscale_factor = upscale_factor
|
|
self.face_size = (face_size, face_size)
|
|
|
|
|
|
self.face_template = np.array([[686.77227723, 488.62376238], [586.77227723, 493.59405941],
|
|
[337.91089109, 488.38613861], [437.95049505, 493.51485149],
|
|
[513.58415842, 678.5049505]])
|
|
self.face_template = self.face_template / (1024 // face_size)
|
|
|
|
self.similarity_trans = trans.SimilarityTransform()
|
|
|
|
self.all_landmarks_5 = []
|
|
self.all_landmarks_68 = []
|
|
self.affine_matrices = []
|
|
self.inverse_affine_matrices = []
|
|
self.cropped_faces = []
|
|
self.restored_faces = []
|
|
self.save_png = True
|
|
|
|
def init_dlib(self, detection_path, landmark5_path, landmark68_path):
|
|
"""Initialize the dlib detectors and predictors."""
|
|
self.face_detector = dlib.cnn_face_detection_model_v1(detection_path)
|
|
self.shape_predictor_5 = dlib.shape_predictor(landmark5_path)
|
|
self.shape_predictor_68 = dlib.shape_predictor(landmark68_path)
|
|
|
|
def free_dlib_gpu_memory(self):
|
|
del self.face_detector
|
|
del self.shape_predictor_5
|
|
del self.shape_predictor_68
|
|
|
|
def read_input_image(self, img_path):
|
|
|
|
self.input_img = dlib.load_rgb_image(img_path)
|
|
|
|
def detect_faces(self, img_path, upsample_num_times=1, only_keep_largest=False):
|
|
"""
|
|
Args:
|
|
img_path (str): Image path.
|
|
upsample_num_times (int): Upsamples the image before running the
|
|
face detector
|
|
|
|
Returns:
|
|
int: Number of detected faces.
|
|
"""
|
|
self.read_input_image(img_path)
|
|
det_faces = self.face_detector(self.input_img, upsample_num_times)
|
|
if len(det_faces) == 0:
|
|
print('No face detected. Try to increase upsample_num_times.')
|
|
else:
|
|
if only_keep_largest:
|
|
print('Detect several faces and only keep the largest.')
|
|
face_areas = []
|
|
for i in range(len(det_faces)):
|
|
face_area = (det_faces[i].rect.right() - det_faces[i].rect.left()) * (
|
|
det_faces[i].rect.bottom() - det_faces[i].rect.top())
|
|
face_areas.append(face_area)
|
|
largest_idx = face_areas.index(max(face_areas))
|
|
self.det_faces = [det_faces[largest_idx]]
|
|
else:
|
|
self.det_faces = det_faces
|
|
return len(self.det_faces)
|
|
|
|
def get_face_landmarks_5(self):
|
|
for face in self.det_faces:
|
|
shape = self.shape_predictor_5(self.input_img, face.rect)
|
|
landmark = np.array([[part.x, part.y] for part in shape.parts()])
|
|
self.all_landmarks_5.append(landmark)
|
|
return len(self.all_landmarks_5)
|
|
|
|
def get_face_landmarks_68(self):
|
|
"""Get 68 densemarks for cropped images.
|
|
|
|
Should only have one face at most in the cropped image.
|
|
"""
|
|
num_detected_face = 0
|
|
for idx, face in enumerate(self.cropped_faces):
|
|
|
|
det_face = self.face_detector(face, 1)
|
|
if len(det_face) == 0:
|
|
print(f'Cannot find faces in cropped image with index {idx}.')
|
|
self.all_landmarks_68.append(None)
|
|
else:
|
|
if len(det_face) > 1:
|
|
print('Detect several faces in the cropped face. Use the '
|
|
' largest one. Note that it will also cause overlap '
|
|
'during paste_faces_to_input_image.')
|
|
face_areas = []
|
|
for i in range(len(det_face)):
|
|
face_area = (det_face[i].rect.right() - det_face[i].rect.left()) * (
|
|
det_face[i].rect.bottom() - det_face[i].rect.top())
|
|
face_areas.append(face_area)
|
|
largest_idx = face_areas.index(max(face_areas))
|
|
face_rect = det_face[largest_idx].rect
|
|
else:
|
|
face_rect = det_face[0].rect
|
|
shape = self.shape_predictor_68(face, face_rect)
|
|
landmark = np.array([[part.x, part.y] for part in shape.parts()])
|
|
self.all_landmarks_68.append(landmark)
|
|
num_detected_face += 1
|
|
|
|
return num_detected_face
|
|
|
|
def warp_crop_faces(self, save_cropped_path=None, save_inverse_affine_path=None):
|
|
"""Get affine matrix, warp and cropped faces.
|
|
|
|
Also get inverse affine matrix for post-processing.
|
|
"""
|
|
for idx, landmark in enumerate(self.all_landmarks_5):
|
|
|
|
self.similarity_trans.estimate(landmark, self.face_template)
|
|
affine_matrix = self.similarity_trans.params[0:2, :]
|
|
self.affine_matrices.append(affine_matrix)
|
|
|
|
cropped_face = cv2.warpAffine(self.input_img, affine_matrix, self.face_size)
|
|
self.cropped_faces.append(cropped_face)
|
|
|
|
if save_cropped_path is not None:
|
|
path, ext = os.path.splitext(save_cropped_path)
|
|
if self.save_png:
|
|
save_path = f'{path}_{idx:02d}.png'
|
|
else:
|
|
save_path = f'{path}_{idx:02d}{ext}'
|
|
|
|
imwrite(cv2.cvtColor(cropped_face, cv2.COLOR_RGB2BGR), save_path)
|
|
|
|
|
|
self.similarity_trans.estimate(self.face_template, landmark * self.upscale_factor)
|
|
inverse_affine = self.similarity_trans.params[0:2, :]
|
|
self.inverse_affine_matrices.append(inverse_affine)
|
|
|
|
if save_inverse_affine_path is not None:
|
|
path, _ = os.path.splitext(save_inverse_affine_path)
|
|
save_path = f'{path}_{idx:02d}.pth'
|
|
torch.save(inverse_affine, save_path)
|
|
|
|
def add_restored_face(self, face):
|
|
self.restored_faces.append(face)
|
|
|
|
def paste_faces_to_input_image(self, save_path):
|
|
|
|
input_img = cv2.cvtColor(self.input_img, cv2.COLOR_RGB2BGR)
|
|
h, w, _ = input_img.shape
|
|
h_up, w_up = h * self.upscale_factor, w * self.upscale_factor
|
|
|
|
upsample_img = cv2.resize(input_img, (w_up, h_up))
|
|
assert len(self.restored_faces) == len(
|
|
self.inverse_affine_matrices), ('length of restored_faces and affine_matrices are different.')
|
|
for restored_face, inverse_affine in zip(self.restored_faces, self.inverse_affine_matrices):
|
|
inv_restored = cv2.warpAffine(restored_face, inverse_affine, (w_up, h_up))
|
|
mask = np.ones((*self.face_size, 3), dtype=np.float32)
|
|
inv_mask = cv2.warpAffine(mask, inverse_affine, (w_up, h_up))
|
|
|
|
inv_mask_erosion = cv2.erode(inv_mask, np.ones((2 * self.upscale_factor, 2 * self.upscale_factor),
|
|
np.uint8))
|
|
inv_restored_remove_border = inv_mask_erosion * inv_restored
|
|
total_face_area = np.sum(inv_mask_erosion) // 3
|
|
|
|
w_edge = int(total_face_area**0.5) // 20
|
|
erosion_radius = w_edge * 2
|
|
inv_mask_center = cv2.erode(inv_mask_erosion, np.ones((erosion_radius, erosion_radius), np.uint8))
|
|
blur_size = w_edge * 2
|
|
inv_soft_mask = cv2.GaussianBlur(inv_mask_center, (blur_size + 1, blur_size + 1), 0)
|
|
upsample_img = inv_soft_mask * inv_restored_remove_border + (1 - inv_soft_mask) * upsample_img
|
|
if self.save_png:
|
|
save_path = save_path.replace('.jpg', '.png').replace('.jpeg', '.png')
|
|
imwrite(upsample_img.astype(np.uint8), save_path)
|
|
|
|
def clean_all(self):
|
|
self.all_landmarks_5 = []
|
|
self.all_landmarks_68 = []
|
|
self.restored_faces = []
|
|
self.affine_matrices = []
|
|
self.cropped_faces = []
|
|
self.inverse_affine_matrices = []
|
|
|