--- license: apache-2.0 tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan-3 results: [] --- # distilhubert-finetuned-gtzan-3 This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.5578 - Accuracy: 0.89 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.8069 | 1.0 | 57 | 1.7158 | 0.51 | | 1.3469 | 2.0 | 114 | 1.2925 | 0.64 | | 0.8341 | 3.0 | 171 | 0.8796 | 0.77 | | 0.682 | 4.0 | 228 | 0.8847 | 0.69 | | 0.3931 | 5.0 | 285 | 0.6189 | 0.84 | | 0.26 | 6.0 | 342 | 0.5124 | 0.85 | | 0.1744 | 7.0 | 399 | 0.6412 | 0.81 | | 0.1053 | 8.0 | 456 | 0.6281 | 0.86 | | 0.0655 | 9.0 | 513 | 0.5340 | 0.89 | | 0.2067 | 10.0 | 570 | 0.5578 | 0.89 | ### Framework versions - Transformers 4.29.0 - Pytorch 2.0.1 - Datasets 2.12.0 - Tokenizers 0.13.2