File size: 26,750 Bytes
fd1165c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 |
---
language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:6300
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: BAAI/bge-base-en-v1.5
widget:
- source_sentence: The cumulative basis adjustments associated with these hedging
relationships are a reduction of the amortized cost basis of the closed portfolios
of $19 million.
sentences:
- What are the main factors that influence the timing and cost of the company's
inventory purchases?
- What was the reduction in the amortized cost basis of the closed portfolios due
to cumulative basis adjustments in these hedging relationships?
- What was Garmin Ltd.'s net income for the fiscal year ended December 30, 2023?
- source_sentence: 'The components of the provision for income taxes were as follows:
U.S. Federal $ (314,757), U.S. State and Local $ (85,355), Foreign $ (1,162).
Effective income tax rate | 24.2% | | 23.9% | | ''19.7% | for the years 2021,
2022, and 2023.'
sentences:
- How much of the lease obligations is payable within 12 months as of December 31,
2023?
- What are the components and the effective tax rates for the year 2023 as reported
in the financial statements?
- How many Dollar Tree Plus stores were there as of January 28, 2023?
- source_sentence: The Company may receive advanced royalty payments from licensees,
either in advance of a licensee’s subsequent sales to customers or, prior to the
completion of the Company’s performance obligation. The Wizards of the Coast and
Digital Gaming segment may also receive advanced payments from end users of its
digital games at the time of the initial purchase, through in-application purchases,
or through subscription services. Revenues on all licensee and digital gaming
advanced payments are deferred until the respective performance obligations are
satisfied, and these digital gaming revenues are recognized over a period of time,
determined based on either player usage patterns or the estimated playing life
of the user, or when additional downloadable content is made available, or as
with subscription services, ratably over the subscription term.
sentences:
- How does the Company recognize revenue from advanced royalty payments and digital
game purchases?
- What is the primary role of Canopy technology in the Health Services segment?
- Which section of a financial document provides an index to Financial Statements
and Supplementary Data?
- source_sentence: Item 8 covers Financial Statements and Supplementary Data.
sentences:
- How much did the prepaid expenses increase from 2022 to 2023?
- What strategies are outlined in the Company's human capital management?
- What type of data does Item 8 cover in the company's filing?
- source_sentence: When points are issued as a result of a stay by a Hilton Honors
member at an owned or leased hotel, we recognize a reduction in owned and leased
hotels revenues, since we are also the program sponsor.
sentences:
- What financial impact does the redemption of Hilton Honors points have on the
revenue of owned and leased hotels?
- What original companies formed IBM in 1911?
- What was the global gender equity status at Meta in July 2023?
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: BGE base Financial Matryoshka
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.6714285714285714
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8114285714285714
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8485714285714285
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6714285714285714
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2704761904761904
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.16971428571428568
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6714285714285714
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8114285714285714
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8485714285714285
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7869239024966277
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7507120181405897
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7550416257512982
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.6657142857142857
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.81
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8542857142857143
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8928571428571429
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6657142857142857
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.27
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17085714285714285
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08928571428571426
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6657142857142857
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.81
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8542857142857143
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8928571428571429
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7812019485050782
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7451230158730157
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7500357971583163
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.6628571428571428
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.7928571428571428
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8428571428571429
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8842857142857142
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6628571428571428
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2642857142857143
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.16857142857142854
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08842857142857141
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6628571428571428
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.7928571428571428
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8428571428571429
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8842857142857142
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7743199196082401
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7389903628117913
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7442531468911058
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.6671428571428571
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.77
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8228571428571428
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8685714285714285
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6671428571428571
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.25666666666666665
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.16457142857142856
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08685714285714285
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6671428571428571
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.77
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8228571428571428
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8685714285714285
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7655373626539865
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7328270975056688
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7378874490017019
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.6285714285714286
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.75
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.7842857142857143
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8285714285714286
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6285714285714286
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.25
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.15685714285714283
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08285714285714285
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6285714285714286
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.75
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.7842857142857143
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8285714285714286
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7300345502506145
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.6984109977324261
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7040560866496234
name: Cosine Map@100
---
# BGE base Financial Matryoshka
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- json
- **Language:** en
- **License:** apache-2.0
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Ram934/bge-base-financial-matryoshka")
# Run inference
sentences = [
'When points are issued as a result of a stay by a Hilton Honors member at an owned or leased hotel, we recognize a reduction in owned and leased hotels revenues, since we are also the program sponsor.',
'What financial impact does the redemption of Hilton Honors points have on the revenue of owned and leased hotels?',
'What original companies formed IBM in 1911?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Information Retrieval
* Datasets: `dim_768`, `dim_512`, `dim_256`, `dim_128` and `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | dim_768 | dim_512 | dim_256 | dim_128 | dim_64 |
|:--------------------|:-----------|:-----------|:-----------|:-----------|:---------|
| cosine_accuracy@1 | 0.6714 | 0.6657 | 0.6629 | 0.6671 | 0.6286 |
| cosine_accuracy@3 | 0.8114 | 0.81 | 0.7929 | 0.77 | 0.75 |
| cosine_accuracy@5 | 0.8486 | 0.8543 | 0.8429 | 0.8229 | 0.7843 |
| cosine_accuracy@10 | 0.9 | 0.8929 | 0.8843 | 0.8686 | 0.8286 |
| cosine_precision@1 | 0.6714 | 0.6657 | 0.6629 | 0.6671 | 0.6286 |
| cosine_precision@3 | 0.2705 | 0.27 | 0.2643 | 0.2567 | 0.25 |
| cosine_precision@5 | 0.1697 | 0.1709 | 0.1686 | 0.1646 | 0.1569 |
| cosine_precision@10 | 0.09 | 0.0893 | 0.0884 | 0.0869 | 0.0829 |
| cosine_recall@1 | 0.6714 | 0.6657 | 0.6629 | 0.6671 | 0.6286 |
| cosine_recall@3 | 0.8114 | 0.81 | 0.7929 | 0.77 | 0.75 |
| cosine_recall@5 | 0.8486 | 0.8543 | 0.8429 | 0.8229 | 0.7843 |
| cosine_recall@10 | 0.9 | 0.8929 | 0.8843 | 0.8686 | 0.8286 |
| **cosine_ndcg@10** | **0.7869** | **0.7812** | **0.7743** | **0.7655** | **0.73** |
| cosine_mrr@10 | 0.7507 | 0.7451 | 0.739 | 0.7328 | 0.6984 |
| cosine_map@100 | 0.755 | 0.75 | 0.7443 | 0.7379 | 0.7041 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### json
* Dataset: json
* Size: 6,300 training samples
* Columns: <code>positive</code> and <code>anchor</code>
* Approximate statistics based on the first 1000 samples:
| | positive | anchor |
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 9 tokens</li><li>mean: 46.56 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 20.58 tokens</li><li>max: 51 tokens</li></ul> |
* Samples:
| positive | anchor |
|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------|
| <code>All of our Company’s facilities and other operations in the United States and elsewhere around the world are subject to various environmental protection statutes and regulations, including those relating to the use and treatment of water resources, discharge of wastewater, and air emissions.</code> | <code>What types of environmental regulations does the company need to comply with?</code> |
| <code>Domestically, diesel fuel prices were higher in fiscal 2022 than in the prior year and may increase further in fiscal 2023 because of international tensions.</code> | <code>How did diesel fuel prices affect the company’s freight costs in fiscal 2022?</code> |
| <code>Our common stock trades on the NASDAQ Global Select Market, under the symbol “COST.”</code> | <code>What is the trading symbol for Costco's common stock on the NASDAQ Global Select Market?</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 4
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `tf32`: False
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 16
- `eval_accumulation_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: False
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
|:--------:|:------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|
| 0.96 | 3 | - | 0.7681 | 0.7635 | 0.7543 | 0.7381 | 0.6883 |
| 1.92 | 6 | - | 0.7812 | 0.7747 | 0.7706 | 0.7602 | 0.7197 |
| 2.88 | 9 | - | 0.7848 | 0.7806 | 0.7744 | 0.7635 | 0.7286 |
| 3.2 | 10 | 3.2955 | - | - | - | - | - |
| **3.84** | **12** | **-** | **0.7869** | **0.7812** | **0.7743** | **0.7655** | **0.73** |
* The bold row denotes the saved checkpoint.
### Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.3.1
- Transformers: 4.41.2
- PyTorch: 2.4.1+cu121
- Accelerate: 1.1.1
- Datasets: 2.19.1
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |