Update README.md
Browse files
README.md
CHANGED
|
@@ -45,6 +45,147 @@ gguf_f16: [tinyllama-coder-py-4bit-v10-unsloth.F16.gguf](https://huggingface.co/
|
|
| 45 |
gguf_Q4_K_M: [tinyllama-coder-py-4bit-v10-unsloth.Q4_K_M.gguf](https://huggingface.co/Ramikan-BR/tinyllama-coder-py-4bit-v10/blob/main/tinyllama-coder-py-4bit-v10-unsloth.Q4_K_M.gguf)
|
| 46 |
gguf_Q8_0: [tinyllama-coder-py-4bit-v10-unsloth.Q8_0.gguf](https://huggingface.co/Ramikan-BR/tinyllama-coder-py-4bit-v10/blob/main/tinyllama-coder-py-4bit-v10-unsloth.Q8_0.gguf)
|
| 47 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
| 49 |
|
| 50 |
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
|
|
|
|
| 45 |
gguf_Q4_K_M: [tinyllama-coder-py-4bit-v10-unsloth.Q4_K_M.gguf](https://huggingface.co/Ramikan-BR/tinyllama-coder-py-4bit-v10/blob/main/tinyllama-coder-py-4bit-v10-unsloth.Q4_K_M.gguf)
|
| 46 |
gguf_Q8_0: [tinyllama-coder-py-4bit-v10-unsloth.Q8_0.gguf](https://huggingface.co/Ramikan-BR/tinyllama-coder-py-4bit-v10/blob/main/tinyllama-coder-py-4bit-v10-unsloth.Q8_0.gguf)
|
| 47 |
|
| 48 |
+
#### Training Hyperparameters
|
| 49 |
+
|
| 50 |
+
Notebook [Unsloath](https://github.com/unslothai/unsloth) that I used for AI refinement: [TinyLlama](https://colab.research.google.com/drive/1AZghoNBQaMDgWJpi4RbffGM1h6raLUj9?usp=sharing)
|
| 51 |
+
```python
|
| 52 |
+
|
| 53 |
+
%%capture
|
| 54 |
+
# Installs Unsloth, Xformers (Flash Attention) and all other packages!
|
| 55 |
+
!pip install "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"
|
| 56 |
+
!pip install --no-deps xformers trl peft accelerate bitsandbytes # xformers "xformers<0.0.26"
|
| 57 |
+
|
| 58 |
+
import os
|
| 59 |
+
from google.colab import drive
|
| 60 |
+
drive.mount('/content/drive')
|
| 61 |
+
|
| 62 |
+
from unsloth import FastLanguageModel
|
| 63 |
+
import torch
|
| 64 |
+
max_seq_length = 4096 # Choose any! We auto support RoPE Scaling internally!
|
| 65 |
+
dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
|
| 66 |
+
load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False.
|
| 67 |
+
|
| 68 |
+
# 4bit pre quantized models we support for 4x faster downloading + no OOMs.
|
| 69 |
+
fourbit_models = [
|
| 70 |
+
"unsloth/mistral-7b-bnb-4bit",
|
| 71 |
+
"unsloth/mistral-7b-instruct-v0.2-bnb-4bit",
|
| 72 |
+
"unsloth/llama-2-7b-bnb-4bit",
|
| 73 |
+
"unsloth/llama-2-13b-bnb-4bit",
|
| 74 |
+
"unsloth/codellama-34b-bnb-4bit",
|
| 75 |
+
"unsloth/tinyllama-bnb-4bit",
|
| 76 |
+
"unsloth/gemma-7b-bnb-4bit", # New Google 6 trillion tokens model 2.5x faster!
|
| 77 |
+
"unsloth/gemma-2b-bnb-4bit",
|
| 78 |
+
] # More models at https://huggingface.co/unsloth
|
| 79 |
+
|
| 80 |
+
model, tokenizer = FastLanguageModel.from_pretrained(
|
| 81 |
+
model_name = "Ramikan-BR/tinyllama-coder-py-4bit_LORA-v9", # "unsloth/tinyllama" for 16bit loading
|
| 82 |
+
max_seq_length = max_seq_length,
|
| 83 |
+
dtype = dtype,
|
| 84 |
+
load_in_4bit = load_in_4bit,
|
| 85 |
+
# token = "hf_...", # use one if using gated models like meta-llama/Llama-2-7b-hf
|
| 86 |
+
)
|
| 87 |
+
|
| 88 |
+
model = FastLanguageModel.get_peft_model(
|
| 89 |
+
model,
|
| 90 |
+
r = 256, # Choose any number > 0 ! Suggested 8, 16, 32, 64, 128
|
| 91 |
+
target_modules = ["q_proj", "k_proj", "v_proj", "o_proj",
|
| 92 |
+
"gate_proj", "up_proj", "down_proj",],
|
| 93 |
+
lora_alpha = 512,
|
| 94 |
+
lora_dropout = 0, # Currently only supports dropout = 0
|
| 95 |
+
bias = "none", # Currently only supports bias = "none"
|
| 96 |
+
use_gradient_checkpointing = True, # @@@ IF YOU GET OUT OF MEMORY - set to True @@@
|
| 97 |
+
random_state = 3407,
|
| 98 |
+
use_rslora = False, # We support rank stabilized LoRA
|
| 99 |
+
loftq_config = None, # And LoftQ
|
| 100 |
+
)
|
| 101 |
+
|
| 102 |
+
alpaca_prompt = """Below is an instruction that describes a task. Write a response that appropriately completes the request.
|
| 103 |
+
### Input:
|
| 104 |
+
{}
|
| 105 |
+
|
| 106 |
+
### Output:
|
| 107 |
+
{}"""
|
| 108 |
+
|
| 109 |
+
EOS_TOKEN = tokenizer.eos_token
|
| 110 |
+
def formatting_prompts_func(examples):
|
| 111 |
+
inputs = examples["problem"]
|
| 112 |
+
outputs = examples["solution"]
|
| 113 |
+
texts = []
|
| 114 |
+
for input, output in zip(inputs, outputs):
|
| 115 |
+
# Must add EOS_TOKEN, otherwise your generation will go on forever!
|
| 116 |
+
text = alpaca_prompt.format(input, output) + EOS_TOKEN
|
| 117 |
+
texts.append(text)
|
| 118 |
+
return { "text" : texts}
|
| 119 |
+
pass
|
| 120 |
+
|
| 121 |
+
from datasets import load_dataset
|
| 122 |
+
dataset = load_dataset('json', data_files='/content/drive/MyDrive/data-oss_instruct-py-10.jsonl', split='train')
|
| 123 |
+
dataset = dataset.map(formatting_prompts_func, batched=True)
|
| 124 |
+
|
| 125 |
+
from trl import SFTTrainer
|
| 126 |
+
from transformers import TrainingArguments
|
| 127 |
+
from unsloth import is_bfloat16_supported
|
| 128 |
+
from transformers.utils import logging
|
| 129 |
+
logging.set_verbosity_info()
|
| 130 |
+
|
| 131 |
+
trainer = SFTTrainer(
|
| 132 |
+
model = model,
|
| 133 |
+
tokenizer = tokenizer,
|
| 134 |
+
train_dataset = dataset,
|
| 135 |
+
dataset_text_field = "text",
|
| 136 |
+
max_seq_length = max_seq_length,
|
| 137 |
+
dataset_num_proc = 2,
|
| 138 |
+
packing = True, # Packs short sequences together to save time!
|
| 139 |
+
args = TrainingArguments(
|
| 140 |
+
per_device_train_batch_size = 2,
|
| 141 |
+
gradient_accumulation_steps = 256,
|
| 142 |
+
warmup_ratio = 0.1,
|
| 143 |
+
num_train_epochs = 2,
|
| 144 |
+
learning_rate = 2e-4,
|
| 145 |
+
fp16 = not torch.cuda.is_bf16_supported(),
|
| 146 |
+
bf16 = torch.cuda.is_bf16_supported(),
|
| 147 |
+
logging_steps = 1,
|
| 148 |
+
optim = "adafactor", # adamw_torch ou adamw_torch_fused +10% velocidade ou adafactor ou adamw_8bit
|
| 149 |
+
weight_decay = 0.1,
|
| 150 |
+
lr_scheduler_type = "linear",
|
| 151 |
+
seed = 3407,
|
| 152 |
+
output_dir = "outputs",
|
| 153 |
+
),
|
| 154 |
+
)
|
| 155 |
+
|
| 156 |
+
trainer_stats = trainer.train()
|
| 157 |
+
|
| 158 |
+
model.save_pretrained("lora_model") # Local saving
|
| 159 |
+
tokenizer.save_pretrained("lora_model")
|
| 160 |
+
model.push_to_hub("Ramikan-BR/tinyllama-coder-py-4bit_LORA-v10", token = "hf_...") # Online saving
|
| 161 |
+
tokenizer.push_to_hub("Ramikan-BR/tinyllama-coder-py-4bit_LORA-v10", token = "hf_...") # Online saving
|
| 162 |
+
|
| 163 |
+
# Merge to 16bit
|
| 164 |
+
model.save_pretrained_merged("model", tokenizer, save_method = "merged_16bit",)
|
| 165 |
+
model.push_to_hub_merged("Ramikan-BR/tinyllama-coder-py-4bit-v10", tokenizer, save_method = "merged_16bit", token = "hf_...")
|
| 166 |
+
|
| 167 |
+
# Merge to 4bit
|
| 168 |
+
if False: model.save_pretrained_merged("model", tokenizer, save_method = "merged_4bit",)
|
| 169 |
+
if False: model.push_to_hub_merged("Ramikan-BR/tinyllama-coder-py-4bit-v10", tokenizer, save_method = "merged_4bit", token = "hf_...")
|
| 170 |
+
|
| 171 |
+
# Just LoRA adapters
|
| 172 |
+
if False: model.save_pretrained_merged("model", tokenizer, save_method = "lora",)
|
| 173 |
+
if False: model.push_to_hub_merged("Ramikan-BR/tinyllama-coder-py-4bit-v10", tokenizer, save_method = "lora", token = "hf_...")
|
| 174 |
+
|
| 175 |
+
# Save to 8bit Q8_0
|
| 176 |
+
model.save_pretrained_gguf("model", tokenizer,)
|
| 177 |
+
model.push_to_hub_gguf("Ramikan-BR/tinyllama-coder-py-4bit-v10", tokenizer, token = "hf_...")
|
| 178 |
+
|
| 179 |
+
# Save to 16bit GGUF
|
| 180 |
+
model.save_pretrained_gguf("model", tokenizer, quantization_method = "f16")
|
| 181 |
+
model.push_to_hub_gguf("Ramikan-BR/tinyllama-coder-py-4bit-v10", tokenizer, quantization_method = "f16", token = "hf_...")
|
| 182 |
+
|
| 183 |
+
# Save to q4_k_m GGUF
|
| 184 |
+
model.save_pretrained_gguf("model", tokenizer, quantization_method = "q4_k_m")
|
| 185 |
+
model.push_to_hub_gguf("Ramikan-BR/tinyllama-coder-py-4bit-v10", tokenizer, quantization_method = "q4_k_m", token = "hf_...")
|
| 186 |
+
|
| 187 |
+
Parameters:
|
| 188 |
+
|
| 189 |
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
| 190 |
|
| 191 |
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
|