--- library_name: setfit tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer datasets: - Ramyashree/Dataset-train500-test100 metrics: - accuracy widget: - text: I weant to use my other account, switch them - text: I can't remember my password, help me reset it - text: the game was postponed and i wanna get a reimbursement - text: where to change to another online account - text: the show was cancelled, get a reimbursement pipeline_tag: text-classification inference: true base_model: thenlper/gte-large model-index: - name: SetFit with thenlper/gte-large results: - task: type: text-classification name: Text Classification dataset: name: Ramyashree/Dataset-train500-test100 type: Ramyashree/Dataset-train500-test100 split: test metrics: - type: accuracy value: 1.0 name: Accuracy --- # SetFit with thenlper/gte-large This is a [SetFit](https://github.com/huggingface/setfit) model trained on the [Ramyashree/Dataset-train500-test100](https://huggingface.co/datasets/Ramyashree/Dataset-train500-test100) dataset that can be used for Text Classification. This SetFit model uses [thenlper/gte-large](https://huggingface.co/thenlper/gte-large) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [thenlper/gte-large](https://huggingface.co/thenlper/gte-large) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 10 classes - **Training Dataset:** [Ramyashree/Dataset-train500-test100](https://huggingface.co/datasets/Ramyashree/Dataset-train500-test100) ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:--------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | create_account | | | edit_account | | | delete_account | | | switch_account | | | get_invoice | | | get_refund | | | payment_issue | | | check_refund_policy | | | recover_password | | | track_refund | | ## Evaluation ### Metrics | Label | Accuracy | |:--------|:---------| | **all** | 1.0 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("Ramyashree/gte-large-train-test") # Run inference preds = model("where to change to another online account") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:-------|:----| | Word count | 3 | 10.258 | 24 | | Label | Training Sample Count | |:--------------------|:----------------------| | check_refund_policy | 50 | | create_account | 50 | | delete_account | 50 | | edit_account | 50 | | get_invoice | 50 | | get_refund | 50 | | payment_issue | 50 | | recover_password | 50 | | switch_account | 50 | | track_refund | 50 | ### Training Hyperparameters - batch_size: (16, 16) - num_epochs: (1, 1) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 20 - body_learning_rate: (2e-05, 2e-05) - head_learning_rate: 2e-05 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:------:|:----:|:-------------:|:---------------:| | 0.0008 | 1 | 0.3248 | - | | 0.04 | 50 | 0.1606 | - | | 0.08 | 100 | 0.0058 | - | | 0.12 | 150 | 0.0047 | - | | 0.16 | 200 | 0.0009 | - | | 0.2 | 250 | 0.0007 | - | | 0.24 | 300 | 0.001 | - | | 0.28 | 350 | 0.0008 | - | | 0.32 | 400 | 0.0005 | - | | 0.36 | 450 | 0.0004 | - | | 0.4 | 500 | 0.0005 | - | | 0.44 | 550 | 0.0005 | - | | 0.48 | 600 | 0.0006 | - | | 0.52 | 650 | 0.0005 | - | | 0.56 | 700 | 0.0004 | - | | 0.6 | 750 | 0.0004 | - | | 0.64 | 800 | 0.0002 | - | | 0.68 | 850 | 0.0003 | - | | 0.72 | 900 | 0.0002 | - | | 0.76 | 950 | 0.0002 | - | | 0.8 | 1000 | 0.0003 | - | | 0.84 | 1050 | 0.0002 | - | | 0.88 | 1100 | 0.0002 | - | | 0.92 | 1150 | 0.0003 | - | | 0.96 | 1200 | 0.0003 | - | | 1.0 | 1250 | 0.0003 | - | ### Framework Versions - Python: 3.10.12 - SetFit: 1.0.1 - Sentence Transformers: 2.2.2 - Transformers: 4.35.2 - PyTorch: 2.1.0+cu121 - Datasets: 2.15.0 - Tokenizers: 0.15.0 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```