Ramyashree commited on
Commit
d0f5129
·
1 Parent(s): 169ccfc

Add SetFit model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false
7
+ }
README.md ADDED
@@ -0,0 +1,218 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: setfit
3
+ tags:
4
+ - setfit
5
+ - sentence-transformers
6
+ - text-classification
7
+ - generated_from_setfit_trainer
8
+ datasets:
9
+ - Ramyashree/Dataset-500-validation
10
+ metrics:
11
+ - accuracy
12
+ widget:
13
+ - text: i want to know the status of my reimbursement, how do i track it?
14
+ - text: ask an agent how to modify my profile
15
+ - text: I want to use my other online account, help me switch them
16
+ - text: I want information about your money back policy
17
+ - text: how can I switch to another account?
18
+ pipeline_tag: text-classification
19
+ inference: true
20
+ base_model: thenlper/gte-large
21
+ ---
22
+
23
+ # SetFit with thenlper/gte-large
24
+
25
+ This is a [SetFit](https://github.com/huggingface/setfit) model trained on the [Ramyashree/Dataset-500-validation](https://huggingface.co/datasets/Ramyashree/Dataset-500-validation) dataset that can be used for Text Classification. This SetFit model uses [thenlper/gte-large](https://huggingface.co/thenlper/gte-large) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
26
+
27
+ The model has been trained using an efficient few-shot learning technique that involves:
28
+
29
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
30
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
31
+
32
+ ## Model Details
33
+
34
+ ### Model Description
35
+ - **Model Type:** SetFit
36
+ - **Sentence Transformer body:** [thenlper/gte-large](https://huggingface.co/thenlper/gte-large)
37
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
38
+ - **Maximum Sequence Length:** 512 tokens
39
+ - **Number of Classes:** 10 classes
40
+ - **Training Dataset:** [Ramyashree/Dataset-500-validation](https://huggingface.co/datasets/Ramyashree/Dataset-500-validation)
41
+ <!-- - **Language:** Unknown -->
42
+ <!-- - **License:** Unknown -->
43
+
44
+ ### Model Sources
45
+
46
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
47
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
48
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
49
+
50
+ ### Model Labels
51
+ | Label | Examples |
52
+ |:--------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
53
+ | create_account | <ul><li>'can i register?'</li><li>'i have no account, what do i have to do?'</li><li>'i watn to know if i can register two profiles with the same email address'</li></ul> |
54
+ | delete_account | <ul><li>'I changed my mind, what should I do to cancel my profile?'</li><li>'i changed my mind, what do i have to do to delete my account?'</li><li>"I odn't want my user account, how do I delete it?"</li></ul> |
55
+ | edit_account | <ul><li>'I want to change my profile, how can I do it?'</li><li>'I need help making changes to my profile'</li><li>'can I make changes to my profile?'</li></ul> |
56
+ | recover_password | <ul><li>'could u ask an agent if i could retrieve my password?'</li><li>'my online account was hacked, how do I recover it?'</li><li>'my account was hacked, can u recover it?'</li></ul> |
57
+ | track_refund | <ul><li>'can yoy tell me about the status of my reimbursement?'</li><li>'tell me if my reimbursement was processed'</li><li>'I want to view the status of my refund, what can I do?'</li></ul> |
58
+ | check_refund_policy | <ul><li>'I want to check your reimbursement policy, what can I do?'</li><li>'cam u ask an agent if i can see their money back guarantee?'</li><li>'I want to check your refund policy'</li></ul> |
59
+ | switch_account | <ul><li>'I weant to use my other account, switch them'</li><li>'ask an agent if i can change to another user account'</li><li>'where to change to another profile'</li></ul> |
60
+ | payment_issue | <ul><li>'I have a problem when trying to pay for my online order, notify it'</li><li>'could you ask an agent where I can report issues making a payment, please?'</li><li>'ask an agent how i can inform of problems paying'</li></ul> |
61
+ | get_refund | <ul><li>'the concert was postponed and i want to get a reimbursement'</li><li>'the concert was postponed, help me get a reimbursement'</li><li>'how to get a reimbursement'</li></ul> |
62
+ | get_invoice | <ul><li>'I want to request some bills, can you tell me how I can do it?'</li><li>'ask an agent how I can request somebills'</li><li>'i want to see a bill'</li></ul> |
63
+
64
+ ## Uses
65
+
66
+ ### Direct Use for Inference
67
+
68
+ First install the SetFit library:
69
+
70
+ ```bash
71
+ pip install setfit
72
+ ```
73
+
74
+ Then you can load this model and run inference.
75
+
76
+ ```python
77
+ from setfit import SetFitModel
78
+
79
+ # Download from the 🤗 Hub
80
+ model = SetFitModel.from_pretrained("Ramyashree/gte-large-with500records-validate")
81
+ # Run inference
82
+ preds = model("how can I switch to another account?")
83
+ ```
84
+
85
+ <!--
86
+ ### Downstream Use
87
+
88
+ *List how someone could finetune this model on their own dataset.*
89
+ -->
90
+
91
+ <!--
92
+ ### Out-of-Scope Use
93
+
94
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
95
+ -->
96
+
97
+ <!--
98
+ ## Bias, Risks and Limitations
99
+
100
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
101
+ -->
102
+
103
+ <!--
104
+ ### Recommendations
105
+
106
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
107
+ -->
108
+
109
+ ## Training Details
110
+
111
+ ### Training Set Metrics
112
+ | Training set | Min | Median | Max |
113
+ |:-------------|:----|:-------|:----|
114
+ | Word count | 3 | 10.356 | 25 |
115
+
116
+ | Label | Training Sample Count |
117
+ |:--------------------|:----------------------|
118
+ | check_refund_policy | 50 |
119
+ | create_account | 50 |
120
+ | delete_account | 50 |
121
+ | edit_account | 50 |
122
+ | get_invoice | 50 |
123
+ | get_refund | 50 |
124
+ | payment_issue | 50 |
125
+ | recover_password | 50 |
126
+ | switch_account | 50 |
127
+ | track_refund | 50 |
128
+
129
+ ### Training Hyperparameters
130
+ - batch_size: (16, 16)
131
+ - num_epochs: (1, 1)
132
+ - max_steps: -1
133
+ - sampling_strategy: oversampling
134
+ - num_iterations: 20
135
+ - body_learning_rate: (2e-05, 2e-05)
136
+ - head_learning_rate: 2e-05
137
+ - loss: CosineSimilarityLoss
138
+ - distance_metric: cosine_distance
139
+ - margin: 0.25
140
+ - end_to_end: False
141
+ - use_amp: False
142
+ - warmup_proportion: 0.1
143
+ - seed: 42
144
+ - eval_max_steps: -1
145
+ - load_best_model_at_end: False
146
+
147
+ ### Training Results
148
+ | Epoch | Step | Training Loss | Validation Loss |
149
+ |:------:|:----:|:-------------:|:---------------:|
150
+ | 0.0008 | 1 | 0.3184 | - |
151
+ | 0.04 | 50 | 0.1532 | - |
152
+ | 0.08 | 100 | 0.0078 | - |
153
+ | 0.12 | 150 | 0.0124 | - |
154
+ | 0.16 | 200 | 0.0017 | - |
155
+ | 0.2 | 250 | 0.0009 | - |
156
+ | 0.24 | 300 | 0.0008 | - |
157
+ | 0.28 | 350 | 0.0008 | - |
158
+ | 0.32 | 400 | 0.0007 | - |
159
+ | 0.36 | 450 | 0.0008 | - |
160
+ | 0.4 | 500 | 0.0004 | - |
161
+ | 0.44 | 550 | 0.0005 | - |
162
+ | 0.48 | 600 | 0.0004 | - |
163
+ | 0.52 | 650 | 0.0005 | - |
164
+ | 0.56 | 700 | 0.0003 | - |
165
+ | 0.6 | 750 | 0.0004 | - |
166
+ | 0.64 | 800 | 0.0003 | - |
167
+ | 0.68 | 850 | 0.0003 | - |
168
+ | 0.72 | 900 | 0.0003 | - |
169
+ | 0.76 | 950 | 0.0004 | - |
170
+ | 0.8 | 1000 | 0.0004 | - |
171
+ | 0.84 | 1050 | 0.0004 | - |
172
+ | 0.88 | 1100 | 0.0002 | - |
173
+ | 0.92 | 1150 | 0.0002 | - |
174
+ | 0.96 | 1200 | 0.0003 | - |
175
+ | 1.0 | 1250 | 0.0004 | - |
176
+
177
+ ### Framework Versions
178
+ - Python: 3.10.12
179
+ - SetFit: 1.0.1
180
+ - Sentence Transformers: 2.2.2
181
+ - Transformers: 4.35.2
182
+ - PyTorch: 2.1.0+cu121
183
+ - Datasets: 2.15.0
184
+ - Tokenizers: 0.15.0
185
+
186
+ ## Citation
187
+
188
+ ### BibTeX
189
+ ```bibtex
190
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
191
+ doi = {10.48550/ARXIV.2209.11055},
192
+ url = {https://arxiv.org/abs/2209.11055},
193
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
194
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
195
+ title = {Efficient Few-Shot Learning Without Prompts},
196
+ publisher = {arXiv},
197
+ year = {2022},
198
+ copyright = {Creative Commons Attribution 4.0 International}
199
+ }
200
+ ```
201
+
202
+ <!--
203
+ ## Glossary
204
+
205
+ *Clearly define terms in order to be accessible across audiences.*
206
+ -->
207
+
208
+ <!--
209
+ ## Model Card Authors
210
+
211
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
212
+ -->
213
+
214
+ <!--
215
+ ## Model Card Contact
216
+
217
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
218
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/root/.cache/torch/sentence_transformers/thenlper_gte-large/",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 1024,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 4096,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 16,
18
+ "num_hidden_layers": 24,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.35.2",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.2.2",
4
+ "transformers": "4.35.2",
5
+ "pytorch": "2.1.0+cu121"
6
+ }
7
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "normalize_embeddings": false,
3
+ "labels": null
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3a4f14ad71d8aa084e19517860efdd88f8bb9bed524c9cf2ffa66db10fa6091b
3
+ size 1340612432
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ac6cf43e22df3bc631807ed9354a3342c0f2d22b83bdad76715ba37cc5ec91f8
3
+ size 83591
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": true,
47
+ "mask_token": "[MASK]",
48
+ "max_length": 128,
49
+ "model_max_length": 1000000000000000019884624838656,
50
+ "pad_to_multiple_of": null,
51
+ "pad_token": "[PAD]",
52
+ "pad_token_type_id": 0,
53
+ "padding_side": "right",
54
+ "sep_token": "[SEP]",
55
+ "stride": 0,
56
+ "strip_accents": null,
57
+ "tokenize_chinese_chars": true,
58
+ "tokenizer_class": "BertTokenizer",
59
+ "truncation_side": "right",
60
+ "truncation_strategy": "longest_first",
61
+ "unk_token": "[UNK]"
62
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff