File size: 2,392 Bytes
ffff548 e0a9844 ffff548 af9e0ee ffff548 af9e0ee 76438bf ffff548 76438bf e0a9844 cbe2991 ffff548 8ec6884 ffff548 e408544 ffff548 76438bf e0a9844 76438bf ffff548 76438bf ffff548 76438bf e0a9844 76438bf e0a9844 ffff548 76438bf e0a9844 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 |
## Overview
# Precision Aquaculture: An Integrated Computer Vision and IoT Approach for Optimized Tilapia Feeding
This repository contains a YOLOv8-based model for precise Tilapia feeding in aquaculture, combining computer vision and IoT technologies. Our system uses real-time IoT sensors to monitor water quality and computer vision to analyze fish size and count, determining optimal feed amounts. We achieved 94% precision in keypoint detection on a dataset of 3,500 annotated Tilapia images, enabling accurate weight estimation from fish length. The system includes a mobile app for remote monitoring and control. Our approach significantly improves aquaculture efficiency, with preliminary estimates suggesting a potential increase in production of up to 58 times compared to traditional farming methods. This repository includes our trained models, code, and a curated open-source dataset of annotated Tilapia images.
[Rest of the README content remains the same]
## How to use
Please download the model weights first
[Counting Model](https://huggingface.co/Raniahossam33/Fish-Counting/blob/main/Fish-Counting-yolov8.pt)
[Keypoint Detection Model](https://huggingface.co/Raniahossam33/Fish-Counting/blob/main/KeyPoint-Detction-Yolov8.pt)
[Paper](https://arxiv.org/abs/2409.08695)
```python
from ultralytics import YOLO
from PIL import Image
img = Image.open('<image-path>')
model = YOLO('<weights-path>')
results = model(img)
```
## Results
<p align="center">
<img src="https://cdn-uploads.huggingface.co/production/uploads/6402324afa1acad60064c742/mEDhKQRfaTZbZnYwUDZLD.png" width="800" ></img>
</p>
<p align="center">
<img src="https://cdn-uploads.huggingface.co/production/uploads/6402324afa1acad60064c742/6ZRl0O7T6P67usVdMFlpo.png" width="900" ></img>
</p>
## Applications
This fish counting model can be useful in various scenarios, including:
- Monitoring fish populations in aquariums or fish farms
- Ecological studies in natural water bodies
- Automated fish stock assessment
## Citation
If you use this model in your research, please cite:
```bibtex
@article{hossam2024precision,
title={Precision Aquaculture: An Integrated Computer Vision and IoT Approach for Optimized Tilapia Feeding},
author={Hossam, Rania and Heakl, Ahmed and Gomaa, Walid},
journal={arXiv preprint arXiv:2409.08695},
year={2024},
doi={10.48550/arXiv.2409.08695}
}
```
|