File size: 2,392 Bytes
ffff548
e0a9844
ffff548
af9e0ee
ffff548
af9e0ee
 
 
 
76438bf
ffff548
76438bf
e0a9844
cbe2991
ffff548
8ec6884
ffff548
e408544
 
ffff548
 
 
76438bf
e0a9844
76438bf
 
 
ffff548
 
76438bf
ffff548
 
76438bf
 
 
e0a9844
 
76438bf
 
 
e0a9844
 
 
 
 
 
 
 
 
 
 
 
ffff548
76438bf
 
 
 
 
 
 
e0a9844
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

## Overview

# Precision Aquaculture: An Integrated Computer Vision and IoT Approach for Optimized Tilapia Feeding


This repository contains a YOLOv8-based model for precise Tilapia feeding in aquaculture, combining computer vision and IoT technologies. Our system uses real-time IoT sensors to monitor water quality and computer vision to analyze fish size and count, determining optimal feed amounts. We achieved 94% precision in keypoint detection on a dataset of 3,500 annotated Tilapia images, enabling accurate weight estimation from fish length. The system includes a mobile app for remote monitoring and control. Our approach significantly improves aquaculture efficiency, with preliminary estimates suggesting a potential increase in production of up to 58 times compared to traditional farming methods. This repository includes our trained models, code, and a curated open-source dataset of annotated Tilapia images.

[Rest of the README content remains the same]
## How to use

Please download the model weights first

[Counting Model](https://huggingface.co/Raniahossam33/Fish-Counting/blob/main/Fish-Counting-yolov8.pt)

[Keypoint Detection Model](https://huggingface.co/Raniahossam33/Fish-Counting/blob/main/KeyPoint-Detction-Yolov8.pt)

[Paper](https://arxiv.org/abs/2409.08695)


```python
from ultralytics import YOLO
from PIL import Image

img = Image.open('<image-path>')
model = YOLO('<weights-path>')
results = model(img)
```

## Results


<p align="center">
<img src="https://cdn-uploads.huggingface.co/production/uploads/6402324afa1acad60064c742/mEDhKQRfaTZbZnYwUDZLD.png" width="800" ></img>
</p>


<p align="center">
<img src="https://cdn-uploads.huggingface.co/production/uploads/6402324afa1acad60064c742/6ZRl0O7T6P67usVdMFlpo.png" width="900" ></img>
</p>


## Applications

This fish counting model can be useful in various scenarios, including:
- Monitoring fish populations in aquariums or fish farms
- Ecological studies in natural water bodies
- Automated fish stock assessment

## Citation

If you use this model in your research, please cite:

```bibtex
@article{hossam2024precision,
  title={Precision Aquaculture: An Integrated Computer Vision and IoT Approach for Optimized Tilapia Feeding},
  author={Hossam, Rania and Heakl, Ahmed and Gomaa, Walid},
  journal={arXiv preprint arXiv:2409.08695},
  year={2024},
  doi={10.48550/arXiv.2409.08695}
}
```